之前想研究一下unsafe类,碰巧在网上看到了这篇文章,觉得写得很好,就转载过来。原文出处是: http://blog.csdn.net/iter_zc/article/details/41822719
1 基础知识
普通对象的结构如下,按64位机器的长度计算 1. 对象头(_mark), 8个字节 2. Oop指针,如果是32G内存以下的,默认开启对象指针压缩,4个字节 3. 数据区 4. Padding(内存对齐),按照8的倍数对齐
数组对象结构是 1. 对象头(_mark), 8个字节 2. Oop指针,如果是32G内存以下的,默认开启对象指针压缩,4个字节 3. 数组长度,4个字节 4. 数据区 5. Padding(内存对齐),按照8的倍数对齐
清楚了对象在内存的基本布局后,咱们说两种计算Java对象大小的方法
- 通过java.lang.instrument.Instrumentation的getObjectSize(obj)直接获取对象的大小
- 通过sun.misc.Unsafe对象的objectFieldOffset(field)等方法结合反射来计算对象的大小
2 instrument的getObjectSize(obj)
先讲讲java.lang.instrument.Instrumentation.getObjectSize()的方式,这种方法得到的是Shallow Size,即遇到引用时,只计算引用的长度,不计算所引用的对象的实际大小。如果要计算所引用对象的实际大小,可以通过递归的方式去计算。
java.lang.instrument.Instrumentation的实例必须通过指定javaagent的方式才能获得,具体的步骤如下: 1. 定义一个类,提供一个premain方法: public static void premain(String agentArgs, Instrumentation instP) 2. 创建META-INF/MANIFEST.MF文件,内容是指定PreMain的类是哪个: Premain-Class: sizeof.ObjectShallowSize 3. 把这个类打成jar,然后用java -javaagent XXXX.jar XXX.main的方式执行
下面先定义一个类来获得java.lang.instrument.Instrumentation的实例,并提供了一个static的sizeOf方法对外提供Instrumentation的能力
package sizeof;
import java.lang.instrument.Instrumentation;
public class ObjectShallowSize {
private static Instrumentation inst;
public static void premain(String agentArgs, Instrumentation instP){
inst = instP;
}
public static long sizeOf(Object obj){
return inst.getObjectSize(obj);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
定义META-INF/MANIFEST.MF文件
Premain-Class: sizeof.ObjectShallowSize
- 1
打成jar包
cd 编译后的类和META-INF文件夹所在目录
jar cvfm java-agent-sizeof.jar META-INF/MANIFEST.MF
- 1
- 2
准备好了这个jar之后,我们可以写测试类来测试Instrumentation的getObjectSize方法了。在这之前我们先来看对象在内存中是按照什么顺序排列的
有如下这个类,字段的定义按如下顺序
private static class ObjectA {
String str; // 4
int i1; // 4
byte b1; // 1
byte b2; // 1
int i2; // 4
ObjectB obj; //4
byte b3; // 1
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
按照我们之前说的方法来计算一下这个对象所占大小,注意按8对齐 8(_mark) + 4(oop指针) + 4(str) + 4(i1) + 1(b1) + 1(b2) + 2(padding) + 4(i2) + 4(obj) + 1(b3) + 7(padding) = 40 ?
但事实上是这样的吗? 我们来用Instrumentation的getObjectSize来计算一下先:
package test;
import sizeof.ObjectShallowSize;
public class SizeofWithInstrumetation {
private static class ObjectA {
String str; // 4
int i1; // 4
byte b1; // 1
byte b2; // 1
int i2; // 4
ObjectB obj; //4
byte b3; // 1
}
private static class ObjectB {
}
public static void main(String[] args){
System.out.println(ObjectShallowSize.sizeOf(new ObjectA()));
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
得到的结果是32!不是会按8对齐吗,b3之前的数据加起来已经是32了,多了1个b3,为33,应该对齐到40才对啊。事实上,HotSpot创建的对象的字段会先按照给定顺序排列一下,默认的顺序如下,从长到短排列,引用排最后: long/double –> int/float –> short/char –> byte/boolean –> Reference
这个顺序可以使用JVM参数: -XX:FieldsAllocationSylte=0(默认是1)来改变。
我们使用sun.misc.Unsafe对象的objectFieldOffset方法来验证一下:
Field[] fields = ObjectA.class.getDeclaredFields();
for(Field f: fields){
System.out.println(f.getName() + " offset: " +unsafe.objectFieldOffset(f));
}
- 1
- 2
- 3
- 4
可以看到确实是按照从长到短,引用排最后的方式在内存中排列的。按照这种方法我们来重新计算下ObjectA创建的对象的长度:
8(_mark) + 4(oop指针) + 4(i1) + + 4(i2) + 1(b1) + 1(b2) + 1(b3) + 1(padding) + 4(str) + 4(obj) = 32 得到的结果和java.lang.instrument.Instrumentation.getObjectSize()的结果是一样的,证明我们的计算方式是正确的。
3 sun.misc.Unsafe的方式
下面说一下通过sun.misc.Unsafe对象的objectFieldOffset(field)等方法结合反射来计算对象的大小。基本的思路如下: 1. 通过反射获得一个类的Field 2. 通过Unsafe的objectFieldOffset()获得每个Field的offSet 3. 对Field按照offset排序,取得最大的offset,然后加上这个field的长度,再加上Padding对齐
上面三步就可以获得一个对象的Shallow size。可以进一步通过递归去计算所引用对象的大小,从而可以计算出一个对象所占用的实际大小。
如何获得Unsafe对象已经在这篇中聊聊序列化(二)使用sun.misc.Unsafe绕过new机制来创建Java对象说过了,可以通过反射的机制来获得.
Oop指针是4还是未压缩的8也可以通过unsafe.arrayIndexScale(Object[].class)来获得,这个方法返回一个引用所占用的长度
static {
try {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
unsafe = (Unsafe) field.get(null);
objectRefSize = unsafe.arrayIndexScale(Object[].class);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
下面的源码摘自 http://java-performance.info/memory-introspection-using-sun-misc-unsafe-and-reflection/, 原文中的代码在计算对象大小的时候有问题,我做了微调,并加上了内存对齐的方法,这样计算出的结果和Instrumentation的getObjectSize方法是一样的。
package test;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
/**
* This class contains object info generated by ClassIntrospector tool
*/
public class ObjectInfo {
/** Field name */
public final String name;
/** Field type name */
public final String type;
/** Field data formatted as string */
public final String contents;
/** Field offset from the start of parent object */
public final int offset;
/** Memory occupied by this field */
public final int length;
/** Offset of the first cell in the array */
public final int arrayBase;
/** Size of a cell in the array */
public final int arrayElementSize;
/** Memory occupied by underlying array (shallow), if this is array type */
public final int arraySize;
/** This object fields */
public final List<ObjectInfo> children;
public ObjectInfo(String name, String type, String contents, int offset, int length, int arraySize,
int arrayBase, int arrayElementSize)
{
this.name = name;
this.type = type;
this.contents = contents;
this.offset = offset;
this.length = length;
this.arraySize = arraySize;
this.arrayBase = arrayBase;
this.arrayElementSize = arrayElementSize;
children = new ArrayList<ObjectInfo>( 1 );
}
public void addChild( final ObjectInfo info )
{
if ( info != null )
children.add( info );
}
/**
* Get the full amount of memory occupied by a given object. This value may be slightly less than
* an actual value because we don't worry about memory alignment - possible padding after the last object field.
*
* The result is equal to the last field offset + last field length + all array sizes + all child objects deep sizes
* @return Deep object size
*/
public long getDeepSize()
{
//return length + arraySize + getUnderlyingSize( arraySize != 0 );
return addPaddingSize(arraySize + getUnderlyingSize( arraySize != 0 ));
}
long size = 0;
private long getUnderlyingSize( final boolean isArray )
{
//long size = 0;
for ( final ObjectInfo child : children )
size += child.arraySize + child.getUnderlyingSize( child.arraySize != 0 );
if ( !isArray && !children.isEmpty() ){
int tempSize = children.get( children.size() - 1 ).offset + children.get( children.size() - 1 ).length;
size += addPaddingSize(tempSize);
}
return size;
}
private static final class OffsetComparator implements Comparator<ObjectInfo>
{
@Override
public int compare( final ObjectInfo o1, final ObjectInfo o2 )
{
return o1.offset - o2.offset; //safe because offsets are small non-negative numbers
}
}
//sort all children by their offset
public void sort()
{
Collections.sort( children, new OffsetComparator() );
}
@Override
public String toString() {
final StringBuilder sb = new StringBuilder();
toStringHelper( sb, 0 );
return sb.toString();
}
private void toStringHelper( final StringBuilder sb, final int depth )
{
depth( sb, depth ).append("name=").append( name ).append(", type=").append( type )
.append( ", contents=").append( contents ).append(", offset=").append( offset )
.append(", length=").append( length );
if ( arraySize > 0 )
{
sb.append(", arrayBase=").append( arrayBase );
sb.append(", arrayElemSize=").append( arrayElementSize );
sb.append( ", arraySize=").append( arraySize );
}
for ( final ObjectInfo child : children )
{
sb.append( '\n' );
child.toStringHelper(sb, depth + 1);
}
}
private StringBuilder depth( final StringBuilder sb, final int depth )
{
for ( int i = 0; i < depth; ++i )
sb.append( "\t");
return sb;
}
private long addPaddingSize(long size){
if(size % 8 != 0){
return (size / 8 + 1) * 8;
}
return size;
}
}
package test;
import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.IdentityHashMap;
import java.util.List;
import java.util.Map;
import sun.misc.Unsafe;
/**
* This class could be used for any object contents/memory layout printing.
*/
public class ClassIntrospector {
private static final Unsafe unsafe;
/** Size of any Object reference */
private static final int objectRefSize;
static {
try {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
unsafe = (Unsafe) field.get(null);
objectRefSize = unsafe.arrayIndexScale(Object[].class);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
/** Sizes of all primitive values */
private static final Map<Class, Integer> primitiveSizes;
static {
primitiveSizes = new HashMap<Class, Integer>(10);
primitiveSizes.put(byte.class, 1);
primitiveSizes.put(char.class, 2);
primitiveSizes.put(int.class, 4);
primitiveSizes.put(long.class, 8);
primitiveSizes.put(float.class, 4);
primitiveSizes.put(double.class, 8);
primitiveSizes.put(boolean.class, 1);
}
/**
* Get object information for any Java object. Do not pass primitives to
* this method because they will boxed and the information you will get will
* be related to a boxed version of your value.
*
* @param obj
* Object to introspect
* @return Object info
* @throws IllegalAccessException
*/
public ObjectInfo introspect(final Object obj)
throws IllegalAccessException {
try {
return introspect(obj, null);
} finally { // clean visited cache before returning in order to make
// this object reusable
m_visited.clear();
}
}
// we need to keep track of already visited objects in order to support
// cycles in the object graphs
private IdentityHashMap<Object, Boolean> m_visited = new IdentityHashMap<Object, Boolean>(
100);
private ObjectInfo introspect(final Object obj, final Field fld)
throws IllegalAccessException {
// use Field type only if the field contains null. In this case we will
// at least know what's expected to be
// stored in this field. Otherwise, if a field has interface type, we
// won't see what's really stored in it.
// Besides, we should be careful about primitives, because they are
// passed as boxed values in this method
// (first arg is object) - for them we should still rely on the field
// type.
boolean isPrimitive = fld != null && fld.getType().isPrimitive();
boolean isRecursive = false; // will be set to true if we have already
// seen this object
if (!isPrimitive) {
if (m_visited.containsKey(obj))
isRecursive = true;
m_visited.put(obj, true);
}
final Class type = (fld == null || (obj != null && !isPrimitive)) ? obj
.getClass() : fld.getType();
int arraySize = 0;
int baseOffset = 0;
int indexScale = 0;
if (type.isArray() && obj != null) {
baseOffset = unsafe.arrayBaseOffset(type);
indexScale = unsafe.arrayIndexScale(type);
arraySize = baseOffset + indexScale * Array.getLength(obj);
}
final ObjectInfo root;
if (fld == null) {
root = new ObjectInfo("", type.getCanonicalName(), getContents(obj,
type), 0, getShallowSize(type), arraySize, baseOffset,
indexScale);
} else {
final int offset = (int) unsafe.objectFieldOffset(fld);
root = new ObjectInfo(fld.getName(), type.getCanonicalName(),
getContents(obj, type), offset, getShallowSize(type),
arraySize, baseOffset, indexScale);
}
if (!isRecursive && obj != null) {
if (isObjectArray(type)) {
// introspect object arrays
final Object[] ar = (Object[]) obj;
for (final Object item : ar)
if (item != null)
root.addChild(introspect(item, null));
} else {
for (final Field field : getAllFields(type)) {
if ((field.getModifiers() & Modifier.STATIC) != 0) {
continue;
}
field.setAccessible(true);
root.addChild(introspect(field.get(obj), field));
}
}
}
root.sort(); // sort by offset
return root;
}
// get all fields for this class, including all superclasses fields
private static List<Field> getAllFields(final Class type) {
if (type.isPrimitive())
return Collections.emptyList();
Class cur = type;
final List<Field> res = new ArrayList<Field>(10);
while (true) {
Collections.addAll(res, cur.getDeclaredFields());
if (cur == Object.class)
break;
cur = cur.getSuperclass();
}
return res;
}
// check if it is an array of objects. I suspect there must be a more
// API-friendly way to make this check.
private static boolean isObjectArray(final Class type) {
if (!type.isArray())
return false;
if (type == byte[].class || type == boolean[].class
|| type == char[].class || type == short[].class
|| type == int[].class || type == long[].class
|| type == float[].class || type == double[].class)
return false;
return true;
}
// advanced toString logic
private static String getContents(final Object val, final Class type) {
if (val == null)
return "null";
if (type.isArray()) {
if (type == byte[].class)
return Arrays.toString((byte[]) val);
else if (type == boolean[].class)
return Arrays.toString((boolean[]) val);
else if (type == char[].class)
return Arrays.toString((char[]) val);
else if (type == short[].class)
return Arrays.toString((short[]) val);
else if (type == int[].class)
return Arrays.toString((int[]) val);
else if (type == long[].class)
return Arrays.toString((long[]) val);
else if (type == float[].class)
return Arrays.toString((float[]) val);
else if (type == double[].class)
return Arrays.toString((double[]) val);
else
return Arrays.toString((Object[]) val);
}
return val.toString();
}
// obtain a shallow size of a field of given class (primitive or object
// reference size)
private static int getShallowSize(final Class type) {
if (type.isPrimitive()) {
final Integer res = primitiveSizes.get(type);
return res != null ? res : 0;
} else
return objectRefSize;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
先一个测试类来验证一下Unsafe的方式计算出的结果
public class ClassIntrospectorTest
{
public static void main(String[] args) throws IllegalAccessException {
final ClassIntrospector ci = new ClassIntrospector();
ObjectInfo res;
res = ci.introspect( new ObjectA() );
System.out.println( res.getDeepSize() );
}
private static class ObjectA {
String str; // 4
int i1; // 4
byte b1; // 1
byte b2; // 1
int i2; // 4
ObjectB obj; //4
byte b3; // 1
}
private static class ObjectB {
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
计算结果如下: 32
和我们之前计算结果是一致的,证明是正确的。
最后再来测试一下数组对象的长度。有两个类如下:
private static class ObjectC {
ObjectD[] array = new ObjectD[2];
}
private static class ObjectD {
int value;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
它们在内存的大体分布如下图:
我们可以手工计算一下ObjectC obj = new ObjectC()的大小:
ObjectC的Shallow size = 8(_mark) + 4(oop指针) + 4(ObjectD[]引用) = 16
new ObjectD[2]数组的长度 = 8(_mark) + 4(oop指针) + 4(数组长度占4个字节) + 4(ObjectD[0]引用) + 4(ObjectD[1]引用) = 24
由于ObjectD[]数组没有指向具体的对象大小,所以我们手工计算的结果是16 + 24 = 40
使用Unsafe对象的方式来计算一下:
public static void main(String[] args) throws IllegalAccessException {
final ClassIntrospector ci = new ClassIntrospector();
ObjectInfo res;
res = ci.introspect( new ObjectC() );
System.out.println( res.getDeepSize() );
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
计算结果如下,和我们计算的结果是一致的,证明是正确的: 40
再给ObjectD[]数组指向具体的ObjectD对象,再测试一下结果:
public static void main(String[] args) throws IllegalAccessException {
final ClassIntrospector ci = new ClassIntrospector();
ObjectInfo res;
res = ci.introspect( new ObjectC() );
System.out.println( res.getDeepSize() );
}
private static class ObjectC {
ObjectD[] array = new ObjectD[2];
public ObjectC(){
array[0] = new ObjectD();
array[1] = new ObjectD();
}
}
private static class ObjectD {
int value;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
我们可以手工计算一下ObjectC obj = new ObjectC()的大小: ObjectC的Shallow size = 8(_mark) + 4(oop指针) + 4(ObjectD[]引用) = 16
new ObjectD[2]数组的长度 = 8(_mark) + 4(oop指针) + 4(数组长度占4个字节) + 4(ObjectD[0]引用) + 4(ObjectD[1]引用) = 24
ObjectD对象长度 = 8(_mark) + 4(oop指针) + 4(value) = 16
所以ObjectC实际占用的空间 = 16 + 24 + 2 * 16 = 72
使用Unsafe的方式计算的结果也是72,和我们手工计算的方式一致。