代码:
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info about this m-file fprintf('\n***********************************************************\n'); fprintf(' <DSP using MATLAB> Problem 7.34 \n\n'); banner(); %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % bandpass in Fig P7.1 ws1 = 0.25*pi; wp1 = 0.35*pi; wp2 = 0.65*pi; ws2=0.75*pi; delta1 = 0.05; delta2 = 0.02; delta3 = 0.05; weights = [1 delta3/delta2 1]; Dw = min((wp1-ws1), (ws2-wp2)); M = ceil((-20*log10((delta1*delta2*delta3)^(1/3)) - 13) / (2.285*Dw) + 1) deltaH = max([delta1,delta2,delta3]); deltaL = min([delta1,delta2,delta3]); f = [ 0 ws1 wp1 wp2 ws2 pi]/pi; m = [ 0 1 2 2 1 0]; h = firpm(M-1, f, m, weights); [db, mag, pha, grd, w] = freqz_m(h, [1]); delta_w = 2*pi/1000; ws1i = floor(ws1/delta_w)+1; wp1i = floor(wp1/delta_w)+1; wp2i = floor(wp2/delta_w)+1; ws2i = floor(ws2/delta_w)+1; Asd = -max(db(1:ws1i)) %[Hr, ww, a, L] = Hr_Type1(h); [Hr,omega,P,L] = ampl_res(h); l = 0:M-1; %% ------------------------------------------------- %% Plot %% ------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Parks-McClellan Method') set(gcf,'Color','white'); subplot(2,2,1); stem(l, h); axis([-1, M, -0.6, 1.3]); grid on; xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response, M=23'); set(gca,'XTickMode','manual','XTick',[0,M-1]) set(gca,'YTickMode','manual','YTick',[-0.6:0.2:1.4]) subplot(2,2,2); plot(w/pi, db); axis([0, 1, -80, 10]); grid on; xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB '); set(gca,'XTickMode','manual','XTick',f) set(gca,'YTickMode','manual','YTick',[-60,-30,0]); set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); subplot(2,2,3); plot(omega/pi, Hr); axis([0, 1, -0.2, 2.2]); grid on; xlabel('frequency in \pi nuits'); ylabel('Hr(w)'); title('Amplitude Response'); set(gca,'XTickMode','manual','XTick',f) set(gca,'YTickMode','manual','YTick',[0,1,1.98,2.02]); subplot(2,2,4); axis([0, 1, -deltaH, deltaH]); sb1w = omega(1:1:ws1i)/pi; sb1e = (Hr(1:1:ws1i)-m(1)); %sb1e = (Hr(1:1:ws1i)-m(1))*weights(1); pbw = omega(wp1i:wp2i)/pi; pbe = (Hr(wp1i:wp2i)-m(3)); %pbe = (Hr(wp1i:wp2i)-m(3))*weights(2); sb2w = omega(ws2i:501)/pi; sb2e = (Hr(ws2i:501)-m(5)); %sb2e = (Hr(ws2i:501)-m(5))*weights(3); plot(sb1w,sb1e,pbw,pbe,sb2w,sb2e); grid on; xlabel('frequency in \pi units'); ylabel('Hr(w)'); title('Error Response'); %title('Weighted Error'); set(gca,'XTickMode','manual','XTick',f); %set(gca,'YTickMode','manual','YTick',[-deltaH,0,deltaH]); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 AmpRes of h(n), Parks-McClellan Method') set(gcf,'Color','white'); plot(omega/pi, Hr); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response'); set(gca,'YTickMode','manual','YTick',[0, 1, 1.98, 2.02]); %set(gca,'YTickLabelMode','manual','YTickLabel',['90';'40';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.35,0.65,0.75,1]); %% ------------------------------------------------------- %% Input is given, and we want the Output %% ------------------------------------------------------- num = 100; n_x1 = [0:1:num]; x1 = cos(0.25*pi*n_x1); n_x2 = n_x1; x2 = cos(0.5*pi*n_x2); n_x3 = n_x1; x3 = cos(0.75*pi*n_x3); % Output y1 = filter(h, 1, x1); n_y1 = n_x1; y2 = filter(h, 1, x2); n_y2 = n_x2; y3 = filter(h, 1, x3); n_y3 = n_x3; figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Input[x1(n)] and Output[y1(n)]'); set(gcf,'Color','white'); subplot(2,1,1); stem(n_x1, x1); axis([-1, 100, -1.2, 1.2]); grid on; xlabel('n'); ylabel('x1(n)'); title('Input Response, Length=100'); subplot(2,1,2); stem(n_y1, y1); axis([-1, 100, -2, 2]); grid on; xlabel('n'); ylabel('y1(n)'); title('Output Response'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Input[x2(n)] and Output[y2(n)]'); set(gcf,'Color','white'); subplot(2,1,1); stem(n_x2, x2); axis([-1, 100, -1.2, 1.2]); grid on; xlabel('n'); ylabel('x2(n)'); title('Input Response, Length=100'); subplot(2,1,2); stem(n_y2, y2); axis([-1, 100, -3, 3]); grid on; xlabel('n'); ylabel('y2(n)'); title('Output Response'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Input[x3(n)] and Output[y3(n)]'); set(gcf,'Color','white'); subplot(2,1,1); stem(n_x3, x3); axis([-1, 100, -1.2, 1.2]); grid on; xlabel('n'); ylabel('x3(n)'); title('Input Response, Length=100'); subplot(2,1,2); stem(n_y3, y3); axis([-1, 100, -2, 2]); grid on; xlabel('n'); ylabel('y3(n)'); title('Output Response'); % --------------------------- % DTFT of x and y % --------------------------- MM = 500; [X1, w1] = dtft1(x1, n_x1, MM); [Y1, w1] = dtft1(y1, n_y1, MM); [X2, w1] = dtft1(x2, n_x2, MM); [Y2, w1] = dtft1(y2, n_y2, MM); [X3, w1] = dtft1(x3, n_x3, MM); [Y3, w1] = dtft1(y3, n_y3, MM); magX1 = abs(X1); angX1 = angle(X1); realX1 = real(X1); imagX1 = imag(X1); magY1 = abs(Y1); angY1 = angle(Y1); realY1 = real(Y1); imagY1 = imag(Y1); magX2 = abs(X2); angX2 = angle(X2); realX2 = real(X2); imagX2 = imag(X2); magY2 = abs(Y2); angY2 = angle(Y2); realY2 = real(Y2); imagY2 = imag(Y2); magX3 = abs(X3); angX3 = angle(X3); realX3 = real(X3); imagX3 = imag(X3); magY3 = abs(Y3); angY3 = angle(Y3); realY3 = real(Y3); imagY3 = imag(Y3); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 DTFT of Input[x1(n)]') set(gcf,'Color','white'); subplot(2,2,1); plot(w1/pi,magX1); grid on; %axis([0,2,0,15]); title('Magnitude Part'); xlabel('frequency in \pi units'); ylabel('Magnitude |X|'); subplot(2,2,3); plot(w1/pi, angX1/pi); grid on; axis([0,2,-1,1]); title('Angle Part'); xlabel('frequency in \pi units'); ylabel('Radians/\pi'); subplot(2,2,2); plot(w1/pi, realX1); grid on; title('Real Part'); xlabel('frequency in \pi units'); ylabel('Real'); subplot(2,2,4); plot(w1/pi, imagX1); grid on; title('Imaginary Part'); xlabel('frequency in \pi units'); ylabel('Imaginary'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 DTFT of Output[y1(n)]') set(gcf,'Color','white'); subplot(2,2,1); plot(w1/pi,magY1); grid on; %axis([0,2,0,15]); title('Magnitude Part'); xlabel('frequency in \pi units'); ylabel('Magnitude |Y|'); subplot(2,2,3); plot(w1/pi, angY1/pi); grid on; axis([0,2,-1,1]); title('Angle Part'); xlabel('frequency in \pi units'); ylabel('Radians/\pi'); subplot(2,2,2); plot(w1/pi, realY1); grid on; title('Real Part'); xlabel('frequency in \pi units'); ylabel('Real'); subplot(2,2,4); plot(w1/pi, imagY1); grid on; title('Imaginary Part'); xlabel('frequency in \pi units'); ylabel('Imaginary'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Magnitude Response') set(gcf,'Color','white'); subplot(1,2,1); plot(w1/pi,magX1); grid on; %axis([0,2,0,15]); title('Magnitude Part of Input'); xlabel('frequency in \pi units'); ylabel('Magnitude |X|'); subplot(1,2,2); plot(w1/pi,magY1); grid on; %axis([0,2,0,15]); title('Magnitude Part of Output'); xlabel('frequency in \pi units'); ylabel('Magnitude |Y|'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 DTFT of Input[x2(n)]') set(gcf,'Color','white'); subplot(2,2,1); plot(w1/pi,magX2); grid on; %axis([0,2,0,15]); title('Magnitude Part'); xlabel('frequency in \pi units'); ylabel('Magnitude |X|'); subplot(2,2,3); plot(w1/pi, angX2/pi); grid on; axis([0,2,-1,1]); title('Angle Part'); xlabel('frequency in \pi units'); ylabel('Radians/\pi'); subplot(2,2,2); plot(w1/pi, realX2); grid on; title('Real Part'); xlabel('frequency in \pi units'); ylabel('Real'); subplot(2,2,4); plot(w1/pi, imagX2); grid on; title('Imaginary Part'); xlabel('frequency in \pi units'); ylabel('Imaginary'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 DTFT of Output[y2(n)]') set(gcf,'Color','white'); subplot(2,2,1); plot(w1/pi,magY2); grid on; %axis([0,2,0,15]); title('Magnitude Part'); xlabel('frequency in \pi units'); ylabel('Magnitude |Y|'); subplot(2,2,3); plot(w1/pi, angY2/pi); grid on; axis([0,2,-1,1]); title('Angle Part'); xlabel('frequency in \pi units'); ylabel('Radians/\pi'); subplot(2,2,2); plot(w1/pi, realY2); grid on; title('Real Part'); xlabel('frequency in \pi units'); ylabel('Real'); subplot(2,2,4); plot(w1/pi, imagY2); grid on; title('Imaginary Part'); xlabel('frequency in \pi units'); ylabel('Imaginary'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Magnitude Response') set(gcf,'Color','white'); subplot(1,2,1); plot(w1/pi,magX2); grid on; %axis([0,2,0,15]); title('Magnitude Part of Input'); xlabel('frequency in \pi units'); ylabel('Magnitude |X|'); subplot(1,2,2); plot(w1/pi,magY2); grid on; %axis([0,2,0,15]); title('Magnitude Part of Output'); xlabel('frequency in \pi units'); ylabel('Magnitude |Y|'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 DTFT of Input[x3(n)]') set(gcf,'Color','white'); subplot(2,2,1); plot(w1/pi,magX3); grid on; %axis([0,2,0,15]); title('Magnitude Part'); xlabel('frequency in \pi units'); ylabel('Magnitude |X|'); subplot(2,2,3); plot(w1/pi, angX3/pi); grid on; axis([0,2,-1,1]); title('Angle Part'); xlabel('frequency in \pi units'); ylabel('Radians/\pi'); subplot(2,2,2); plot(w1/pi, realX3); grid on; title('Real Part'); xlabel('frequency in \pi units'); ylabel('Real'); subplot(2,2,4); plot(w1/pi, imagX3); grid on; title('Imaginary Part'); xlabel('frequency in \pi units'); ylabel('Imaginary'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 DTFT of Output[y3(n)]') set(gcf,'Color','white'); subplot(2,2,1); plot(w1/pi,magY3); grid on; %axis([0,2,0,15]); title('Magnitude Part'); xlabel('frequency in \pi units'); ylabel('Magnitude |Y|'); subplot(2,2,3); plot(w1/pi, angY3/pi); grid on; axis([0,2,-1,1]); title('Angle Part'); xlabel('frequency in \pi units'); ylabel('Radians/\pi'); subplot(2,2,2); plot(w1/pi, realY3); grid on; title('Real Part'); xlabel('frequency in \pi units'); ylabel('Real'); subplot(2,2,4); plot(w1/pi, imagY3); grid on; title('Imaginary Part'); xlabel('frequency in \pi units'); ylabel('Imaginary'); figure('NumberTitle', 'off', 'Name', 'Problem 7.34 Magnitude Response') set(gcf,'Color','white'); subplot(1,2,1); plot(w1/pi,magX3); grid on; %axis([0,2,0,15]); title('Magnitude Part of Input'); xlabel('frequency in \pi units'); ylabel('Magnitude |X|'); subplot(1,2,2); plot(w1/pi,magY3); grid on; %axis([0,2,0,15]); title('Magnitude Part of Output'); xlabel('frequency in \pi units'); ylabel('Magnitude |Y|');
运行结果:
用P-M法设计出来滤波器长度M=23
幅度谱如下
振幅谱如下:
第2个输入,及对应的输出
第2个输入输出的谱(DTFT)对比:
从图中看,输入0.5π分量幅度有所增大,几乎达到原来的2倍。