2020届校级月考【1】

例1【2020届凤翔中学高三理科月考一第12题】已知\(f'(x)\)是\(f(x)\)的导函数,且对任意的实数\(x\)都满足\(f'(x)=\)\(e^x(2x+3)\)\(+f(x)\),\(f(0)=1\),则不等式\(f(x)<5e^x\)的解集为【】

$A.(-4,1)$ $B.(-1,4)$ $C.(-\infty,-4)\cup (1,+\infty)$ $D.(-\infty,-1)\cup (4,+\infty)$

分析:将已知等式\(f'(x)=\)\(e^x(2x+3)\)\(+f(x)\)变形为\(\cfrac{f'(x)-f(x)}{e^x}=2x+3\),

令\(g(x)=\cfrac{f(x)}{e^x}\),则\(g'(x)=\cfrac{f'(x)-f(x)}{e^x}\),则\(g'(x)=2x+3\),

则\(g(x)=x^2+3x+C\),又由于\(f(0)=1\),则\(g(0)=\cfrac{f(0)}{e^0}=1\),则可知\(C=1\),

故\(g(x)=x^2+3x+1\),而不等式\(f(x)<5e^x\)即\(g(x)<5\),故\(x^2+3x+1<5\),

得到\(x^2+3x-4<0\),解得\(-4<x<1\),故选\(A\).

上一篇:在PowerShell中使用curl(Invoke-WebRequest)


下一篇:.NET HttpWebRequest POST form-data数据格式