分析:将已知等式\(f'(x)=\)\(e^x(2x+3)\)\(+f(x)\)变形为\(\cfrac{f'(x)-f(x)}{e^x}=2x+3\),
令\(g(x)=\cfrac{f(x)}{e^x}\),则\(g'(x)=\cfrac{f'(x)-f(x)}{e^x}\),则\(g'(x)=2x+3\),
则\(g(x)=x^2+3x+C\),又由于\(f(0)=1\),则\(g(0)=\cfrac{f(0)}{e^0}=1\),则可知\(C=1\),
故\(g(x)=x^2+3x+1\),而不等式\(f(x)<5e^x\)即\(g(x)<5\),故\(x^2+3x+1<5\),
得到\(x^2+3x-4<0\),解得\(-4<x<1\),故选\(A\).