JNIEnv解析

1.关于JNIEnv和JavaVM

JNIEnv:线程相关的变量

JavaVM:是虚拟机在JNI层的代表,

JNIEnv是一个与线程相关的变量,不同线程的JNIEnv彼此独立。JavaVM是虚拟机在JNI层的代表,在一个虚拟机进程中只有一个JavaVM,因此该进程的所有线程都可以使用这个JavaVM。当后台线程需要调用JNI native时,在native库中使用全局变量保存JavaVM尤为重要,这样使得后台线程能通过JavaVM获得JNIEnv。

native程序中频繁使用JNIEnv*和JavaVM*。而C和C++代码使用JNIEnv*和JavaVM*这两个指针的做法是有区别的,网上大部分代码都使用C++,基本上找不到关于C和C++在这个问题上的详细叙述。

在C中:

使用JNIEnv* env要这样      (*env)->方法名(env,参数列表)

使用JavaVM* vm要这样       (*vm)->方法名(vm,参数列表)

在C++中:

使用JNIEnv* env要这样      env->方法名(参数列表)

使用JavaVM* vm要这样       vm->方法名(参数列表)

上面这二者的区别是,在C中必须先对env和vm间接寻址(得到的内容仍然是一个指针),在调用方法时要将env或vm传入作为第一个参数。C++则直接利用env和vm指针调用其成员。那到底C中的(*env)和C++中的env是否有相同的数据类型呢?C中的(*vm) 和C++中的vm是否有相同的数据类型呢?

为了验证上面的猜测,我们可以查看JNIEnv和JavaVM的定义。他们位于头文件jni.h。我开发JNI用的是android-5平台,下面是 $NDK\platforms\android-5\arch-arm\usr\include\jni.h的部分代码

假如我们用C编码,宏__cplusplus没有定义,那么从最上面的宏#if defined(__cplusplus)可推断

JNIEnv    代表类型 const struct JNINativeInterface*

JavaVM   代表类型 const struct JNIInvokeInterface*

那么JNIEnv* env实际上等价于声明 const struct JNINativeInterface**  env

JavaVM* vm实际上等价于声明 const struct JNIInvokeInterface ** vm

因此要调用JNINativeInterface结构体内的函数指针就必须先对env间接寻址。

(*env)的类型是const struct JNINativeInterface*(指向JNINativeInterface结构体的指针),这时候可以用这个指针调用结构体的成员函数指针,(*env)-> GetMethodID(env, jclass, const char*, const char*)。同理可分析JavaVM* vm。

----------------------------------------------------------------------------------------------------------------------------------------------

假如我们用C++编码,宏__cplusplus有定义,那么从最上面的宏#if defined(__cplusplus)可推断

JNIEnv    代表类型 struct _JNIEnv

JavaVM   代表类型 struct _JavaVM

那么JNIEnv* env实际上等价于声明 struct _JNIEnv*  env

JavaVM* vm实际上等价于声明 struct _JavaVM* vm

要调用_JNIEnv结构体内的函数指针这直接使用env而不需间接寻址, env-> GetMethodID(jclass, const char*, const char*)。同理可分析JavaVM* vm。

现在可以回答刚才的猜测了,C中的(*env)类型是const struct JNINativeInterface*,C++中的env类型是struct _JNIEnv*,因此他们的数据类型不相同(虽然都是指针,但指向不同的结构体类型)。

我们再看结构体_JNIEnv(C++的JNIEnv所代表的类型),这个结构体内有一个成员const struct JNINativeInterface* functions,再仔细看_JNIEnv内定义的函数。当调用_JNIEnv内定义的函数时,其实就是通过functions这个指针调用JNINativeInterface内的函数指针,因此_JNIEnv的成员方法是JNINativeInterface的同名成员函数指针的包装而已,归根结底无论在C还是C++中其实都使用了JNINativeInterface结构体。这时调用JNINativeInterface的函数指针的第一参数是this,在C++中this代表指向当前上下文对象的指针其类型是struct _JNIEnv*(即JNIEnv*)。同理可分析_JavaVM。

2.注册和注销native函数

C和C++注册native函数的方式大致上相同,下面给出具体的代码。

  1. /* JNINativeMethod数组的定义在C和C++中都一样*/
  2. static JNINativeMethod gMethods[] = {
  3. {
  4. "jobjectProcess",
  5. "(Lcom/example/hellojni/HelloJni$Student;Ljava/lang/Integer;)V",
  6. (void*)jobjectProcess
  7. }
  8. /*被省略掉的代码*/
  9. };
  10. jint JNI_OnLoad(JavaVM* vm,void* reserved)
  11. {
  12. JNIEnv* env = NULL;
  13. jint result=-1;
  14. if( (*vm)->GetEnv(vm,(void**)&env , JNI_VERSION_1_4) != JNI_OK)
  15. return result;
  16. jclass HelloJniClazz=(*env)->FindClass(env,"com/example/hellojni/HelloJni");
  17. /* C */
  18. jint r=(*env)->RegisterNatives(env, HelloJniClazz, gMethods, sizeof(gMethods) / sizeof(JNINativeMethod));
  19. /* C++ */
  20. r=AndroidRuntime::registerNativeMethods(env,"com/example/hellojni/HelloJni",gMethods,NELEM(gMethods));
  1. /*或者env->RegisterNatives(HelloJniClazz, gMethods, sizeof(gMethods) / sizeof(JNINativeMethod));*/
  2. if(0 == r)
  3. //注册native函数成功
  4. else
  5. //注册native函数失败
  6. return JNI_VERSION_1_4;
  7. }
  8. void JNI_OnUnload(JavaVM* vm,void* reserved)
  9. {
  10. JNIEnv* env = NULL;
  11. if( (*vm)->GetEnv(vm,(void**)&env , JNI_VERSION_1_4) != JNI_OK)
  12. return;
  13. jclass HelloJniClazz=(*env)->FindClass(env,"com/example/hellojni/HelloJni");
  14. /* C */
  15. jint r=(*env)->UnregisterNatives(env,HelloJniClazz);
  16. /* C++ */
  17. jint r= env->UnregisterNatives(HelloJniClazz)
  18. if(r == 0)
  19. //注销native函数成功
  20. else
  21. //注销native函数失败
  22. }

C和C++中都可以通过JNIEnv的RegisterNatives函数注册,而C++还提供了AndroidRuntime::registerNativeMethods,AndroidRuntime类的registerNativeMethods方法也可以注册。

3. 在native中向LogCat输出调试信息

在C/C++编译单元头部加上

#include <android/log.h>

#define LOG_TAG "自定义一个字符串"

log.h声明了函数int __android_log_print(int prio, const char *tag,  const char *fmt, ...)我们就是用这个函数向LogCat输出信息的。

加入了头文件后还必须给链接器指定__android_log_print函数所在的库文件liblog.so,在Android.mk文件中加上一行

LOCAL_LDLIBS := -llog

在native函数中可以用如下语句输出了

__android_log_print(ANDROID_LOG_DEBUG,LOG_TAG,"name=%s,age=%d",”卢斌晖”,28);

第一个参数ANDROID_LOG_DEBUG是枚举常量,它在log.h中定义。

  1. typedef enum android_LogPriority
  2. {
  3. ANDROID_LOG_UNKNOWN = 0,
  4. ANDROID_LOG_DEFAULT,    /* only for SetMinPriority() */
  5. ANDROID_LOG_VERBOSE,
  6. ANDROID_LOG_DEBUG,
  7. ANDROID_LOG_INFO,
  8. ANDROID_LOG_WARN,
  9. ANDROID_LOG_ERROR,
  10. ANDROID_LOG_FATAL,
  11. ANDROID_LOG_SILENT,     /* only for SetMinPriority(); must be last */
  12. } android_LogPriority;

我们可以根据调试信息的不同类别而选用不同的枚举常量。

4.关于jclass

jclass代表JAVA中的java.lang.Class。我们看jclass的定义,下面给出$NDK\platforms\android-5\arch-arm\usr\include\jni.h的部分代码

  1. #ifdef __cplusplus
  2. /*Reference types, in C++*/
  3. class _jobject {};
  4. class _jclass : public _jobject {}; /*_jclass继承_jobject*/
  5. typedef _jclass*        jclass;
  6. #else
  7. /*Reference types, in C.*/
  8. typedef void*           jobject;
  9. typedef jobject         jclass;
  10. #endif

在C中jclass代表类型void*,在C++中代表类型_jclass*。因此jclass是指针,我们能够在log中输出jclass变量值。

__android_log_print(ANDROID_LOG_DEBUG,"native函数中输出","地址=%p",jclass变量);

当多个native函数都需要使用同一个JAVA类的jclass变量时,不能够定义jclass类型全局变量并只对其赋初值一次然后在多次JAVA对native函数调用中使用这个jclass变量。不能企图以此方式来节约获得jclass变量的开销。

每次JAVA调用native都必须重新获得jclass,上次调用native所得到的jclass在下次调用native时再使用是无效的。下面是C代码

  1. static jclass StudentClazz;   //全局变量
  2. jint JNI_OnLoad(JavaVM* vm,void* reserved)
  3. {
  4. JNIEnv* env = NULL;
  5. jint result=-1;
  6. if( (*vm)->GetEnv(vm,(void**)&env , JNI_VERSION_1_4) != JNI_OK)
  7. return result;
  8. StudentClazz=(*env)->FindClass(env,"com/example/hellojni/HelloJni$Student");    //初始化
  9. return JNI_VERSION_1_4;
  10. }
  11. JNIEXPORT void JNICALL jobjectProcess(JNIEnv *env, jobject instance,jobject student,jobject flag)
  12. {
  13. /*StudentClazz=(*env)->FindClass(env,"com/example/hellojni/HelloJni$Student");*/
  14. __android_log_print(ANDROID_LOG_DEBUG,"在jobjectProcess中输出","StudentClazz=%p",StudentClazz);
  15. nameFieldId=(*env)->GetFieldID(env,StudentClazz,"name","Ljava/lang/String;");
  16. jstring name=(jstring)((*env)->GetObjectField(env,student,nameFieldId));
  17. }

下面是Activity的代码

  1. static
  2. {
  3. System.loadLibrary("hello-jni");
  4. }
  5. public native void jobjectProcess(Student student,Integer flag);
  6. public static class Student{/*省略的代码*/}
  7. protected void onResume()
  8. {
  9. jobjectProcess(new Student(),new Integer(20));
  10. super.onResume();
  11. }

上面的C代码在JNI_OnLoad函数中对StudentClazz初始化,在jobjectProcess函数内没有再对StudentClazz赋值。此时运行程序会出错并在LogCat输出如下信息:

DEBUG/在jobjectProcess中输出(8494): StudentClazz=0x44c0a8f0

WARN/dalvikvm(8286): JNI WARNING: 0x44c0a8f0 is not a valid JNI reference

WARN/dalvikvm(8286): in Lcom/example/hellojni/HelloJni;.jobjectProcess (Lcom/example/hellojni/HelloJni$Student;Ljava/lang/Integer;)V (GetFieldID)

提示StudentClazz所指向的地址(0x44c0a8f0)不是合法的JNI引用。如果把jobjectProcess函数的第一行注释解除掉,再次给StudentClazz赋值程序便正常执行。

其实不管在哪个native函数内得到的StudentClazz值都是相同的,但每次native调用还是必须执行一次FindClass重新给StudentClazz赋值。

5.native的char*和JAVA的String相互转换

首先确保C/C++源文件的字符编码是UTF-8与JAVA的class文件字符编码保持一致。如果C/C++源码含有中文,那么编译出来的so中的中文字符串也保存为UTF-8编码,这样的程序不会产生乱码。

JNI提供了jstring来引用JAVA的String类型变量,如果native函数需要返回 String或者接受String类型参数就必须使用到jstring。而C/C++用char*引用字符串起始地址,当native函数接到jstring后要转换为char*所指向的字符串才能处理。当我们处理完char*所指向的字符串又要转换为jstring才能返回给JAVA代码。下面给出转换的方法(下面均是C代码)。

jstring转换为char*使用JNIEnv的const char*  GetStringUTFChars(JNIEnv*, jstring, jboolean*)

JNIEnv env=//传入参数 ;  jstring name=//传入参数 ;

const char *nameStr=(*env)->GetStringUTFChars(env,name,NULL);

调用完GetStringUTFChars后必须调用JNIEnv的void ReleaseStringUTFChars(JNIEnv*, jstring, const char*)释放新建的字符串。

(*env)-> ReleaseStringUTFChars(env,name, nameStr);

char*转换为jstring使用JNIEnv的jstring  NewStringUTF(JNIEnv*, const char*);

jstring newArgName=(*env)->NewStringUTF(env, nameStr);

调用完NewStringUTF后必须调用JNIEnv的void DeleteLocalRef(JNIEnv*, jobject);释放新建的jstring。

(*env)-> DeleteLocalRef(env, newArgName);

上一篇:java关键字synchronized


下一篇:Java的synchronized关键字:同步机制总结