# 决策树 from sklearn import tree from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split import pandas as pd wine = load_wine() X=wine.data Y=wine.target df = pd.DataFrame(X) df["class"] = Y clf = tree.DecisionTreeClassifier(criterion="entropy") x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3) clf.fit(x_train,y_train) score = clf.score(x_test,y_test) print(score) import graphviz feature_name = wine["feature_names"] dot_data = tree.export_graphviz(clf, feature_names = feature_name, filled=True, rounded=True ) graph=graphviz.Source(dot_data) print(graph)