第三十三篇 玩转数据结构——红黑树(Read Black Tree)

1.. 图解2-3树维持绝对平衡的原理:

  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)

2.. 红黑树与2-3树是等价的

  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)

3.. 红黑树的特点

  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
  • 简要概括如下:
  • 所有节点非黑即红;根节点为黑;NULL节点为黑;红节点孩子为黑;黑平衡

4.. 实现红黑树的业务逻辑

  • import java.util.ArrayList;
    
    public class RBTree<K extends Comparable<K>, V> {
    
        private static final boolean RED = true;
    private static final boolean BLACK = false; private class Node{
    public K key;
    public V value;
    public Node left, right;
    public boolean color; public Node(K key, V value){
    this.key = key;
    this.value = value;
    left = null;
    right = null;
    color = RED;
    }
    } private Node root;
    private int size; public RBTree(){
    root = null;
    size = 0;
    } public int getSize(){
    return size;
    } public boolean isEmpty(){
    return size == 0;
    } // 判断节点node的颜色
    private boolean isRed(Node node){
    if(node == null)
    return BLACK;
    return node.color;
    } // node x
    // / \ 左旋转 / \
    // T1 x ---------> node T3
    // / \ / \
    // T2 T3 T1 T2
    private Node leftRotate(Node node){ Node x = node.right; // 左旋转
    node.right = x.left;
    x.left = node; x.color = node.color;
    node.color = RED; return x;
    } // node x
    // / \ 右旋转 / \
    // x T2 -------> y node
    // / \ / \
    // y T1 T1 T2
    private Node rightRotate(Node node){ Node x = node.left; // 右旋转
    node.left = x.right;
    x.right = node; x.color = node.color;
    node.color = RED; return x;
    } // 颜色翻转
    private void flipColors(Node node){ node.color = RED;
    node.left.color = BLACK;
    node.right.color = BLACK;
    } // 向红黑树中添加新的元素(key, value)
    public void add(K key, V value){
    root = add(root, key, value);
    root.color = BLACK; // 最终根节点为黑色节点
    } // 向以node为根的红黑树中插入元素(key, value),递归算法
    // 返回插入新节点后红黑树的根
    private Node add(Node node, K key, V value){ if(node == null){
    size ++;
    return new Node(key, value); // 默认插入红色节点
    } if(key.compareTo(node.key) < 0)
    node.left = add(node.left, key, value);
    else if(key.compareTo(node.key) > 0)
    node.right = add(node.right, key, value);
    else // key.compareTo(node.key) == 0
    node.value = value; if (isRed(node.right) && !isRed(node.left))
    node = leftRotate(node); if (isRed(node.left) && isRed(node.left.left))
    node = rightRotate(node); if (isRed(node.left) && isRed(node.right))
    flipColors(node); return node;
    } // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){ if(node == null)
    return null; if(key.equals(node.key))
    return node;
    else if(key.compareTo(node.key) < 0)
    return getNode(node.left, key);
    else // if(key.compareTo(node.key) > 0)
    return getNode(node.right, key);
    } public boolean contains(K key){
    return getNode(root, key) != null;
    } public V get(K key){ Node node = getNode(root, key);
    return node == null ? null : node.value;
    } public void set(K key, V newValue){
    Node node = getNode(root, key);
    if(node == null)
    throw new IllegalArgumentException(key + " doesn't exist!"); node.value = newValue;
    } // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
    if(node.left == null)
    return node;
    return minimum(node.left);
    } // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){ if(node.left == null){
    Node rightNode = node.right;
    node.right = null;
    size --;
    return rightNode;
    } node.left = removeMin(node.left);
    return node;
    } // 从二分搜索树中删除键为key的节点
    public V remove(K key){ Node node = getNode(root, key);
    if(node != null){
    root = remove(root, key);
    return node.value;
    }
    return null;
    } private Node remove(Node node, K key){ if( node == null )
    return null; if( key.compareTo(node.key) < 0 ){
    node.left = remove(node.left , key);
    return node;
    }
    else if(key.compareTo(node.key) > 0 ){
    node.right = remove(node.right, key);
    return node;
    }
    else{ // key.compareTo(node.key) == 0 // 待删除节点左子树为空的情况
    if(node.left == null){
    Node rightNode = node.right;
    node.right = null;
    size --;
    return rightNode;
    } // 待删除节点右子树为空的情况
    if(node.right == null){
    Node leftNode = node.left;
    node.left = null;
    size --;
    return leftNode;
    } // 待删除节点左右子树均不为空的情况 // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
    // 用这个节点顶替待删除节点的位置
    Node successor = minimum(node.right);
    successor.right = removeMin(node.right);
    successor.left = node.left; node.left = node.right = null; return successor;
    }
    } public static void main(String[] args){ System.out.println("Pride and Prejudice"); ArrayList<String> words = new ArrayList<>();
    if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
    System.out.println("Total words: " + words.size()); RBTree<String, Integer> map = new RBTree<>();
    for (String word : words) {
    if (map.contains(word))
    map.set(word, map.get(word) + 1);
    else
    map.add(word, 1);
    } System.out.println("Total different words: " + map.getSize());
    System.out.println("Frequency of PRIDE: " + map.get("pride"));
    System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
    } System.out.println();
    }
    }

5.. 向红黑树中添加新元素之后需要进行维护的过程示意图

  • 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
上一篇:建立自己的Yum源


下一篇:.Net实现微信公众平台开发接口(一) 之 “微信开发配置”