一、平衡二叉树的定义
- 使树的高度在每次插入元素后仍然能保持O(logn)的级别
- AVL仍然是一棵二叉查找树
- 左右子树的高度之差是平衡因子,且值不超过1
//数据类型
struct node{
int v, height;
node *lchild, *rchild;
};
//新建一个结点
node* newNode(int v){
node* Node = new node;
Node->v = v;
Node->height = 1;
Node->lchild = Node->rchild = NULL;
return Node;
}
//获取结点root的高度
int getHeight(node* root){
if(root == NULL) return 0;
return root->height;
}
//计算平衡因子
int getBalanceFactor(node* root){
return getHeight(root->lchild) - getHeight(root->rchild);
}
//结点root所在子树的height等于其左子树的height与右子树的height的较大值加1
void updateHeight(node* root){
root->height = max(getHeight(root->lchild), getHeight(root->rchild);
}
二、平衡二叉树的基本操作
1. 查找操作
void search(node* root, int x){
if(root == NULL){
printf("search failed\n");
return;
}
if(x == root->data){
printf("%d\n". root->data);
}else if(x < root->data){
search(root->lchild, x);
}else{
search(root->rchild, x);
}
}
2. 插入操作
void L(node* &root){
node* temp = root->rchild;
root->rchild = temp->lchild;//步骤一
temp->lchild = root;//步骤二
updateHeight(root);//更新结点高度
updateHeight(temp);
root = temp;//步骤三
}
void R(node* &root){
node* temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
- LL:对root进行右旋,BF(root)=2,BF(root->lchild)=1
- LR:先对root->lchild进行左旋,再对root进行右旋。BF(root)=2, BF(root->lchild)=-1
- RR:对root进行左旋BF(root)=-2, BF(root->rchild)=-1
- RL:先对root->rchild进行右旋,再对root进行左旋,BF(root)=-2,BF(root->rchild)=1
//不考虑平衡的二叉排序树的插入操作
void insert(node* &root, int v){
if(root == NULL){
root = newNode(v);
return;
}
if(v < root->v){
insert(root->lchild, v);
}else{
insert(root->rchild, v);
}
}
void insert(node* &root, int v){
if(root == NULL){
root = newNode(v);
return;
}
if(v < root->v){
insert(root->lchild, v);
updateHeight(root);
if(getBalanceFactor(root) == 2){
if(getBalanceFactor(root->lchild) == 1){
R(root);
}else if(getBalanceFactor(root->lchild) == -1){
L(root->lchild);
R(root);
}
}else{
insert(root->rchild, v);
updateHeight(root);
if(getBalanceFactor(root) == -2){
if(getBalanceFactor(root-rchild) == -1){
L(root);
}else if(getBalanceFactor(root-rchild) == 1){
R(root->rchild);
L(root);
}
}
}
}
}
3. AVL树的建立
node* Create(int data[], int n){
node* root = NULL;
for(int i = 0; i < n; i++){
insert(root, data[i]);
}
return root;
}