K均值聚类算法的MATLAB实现

1.K-均值聚类法的概述

   之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理。最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理。弄懂了之后就自己手工用matlab编程实现了,最后的结果还不错,嘿嘿~~~
  简单来说,K-均值聚类就是在给定了一组样本(x1, x2, ...xn) (xi, i = 1, 2, ... n均是向量) 之后,假设要将其聚为 m(<n) 类,可以按照如下的步骤实现:
  Step 1: 从 (x1, x2, ...xn) 中随机选择 m 个向量(y1,y2,...ym) 作为初始的聚类中心(可以随意指定,不在n个向量中选择也可以);
  Step 2: 计算 (x1, x2, ...xn) 到这 m 个聚类中心的距离(严格来说为 2阶范数);
  Step 3: 对于每一个 xi(i = 1,2,...n)比较其到 (y1,y2,...ym) 距离,找出其中的最小值,若到 yj 的距离最小,则将 xi 归为第j类;
  Step 4: m 类分好之后, 计算每一类的均值向量作为每一类新的聚类中心;
  Step 5: 比较新的聚类中心与老的聚类中心之间的距离,若大于设定的阈值,则跳到 Step2; 否则输出分类结果和聚类中心,算法结束。
  OK,废话不多说,直接上Matlab代码。
% 利用K-均值聚类的原理,实现对一组数据的分类。这里以一组二维的点为例。
N = ; % 点的个数
X = *rand(,N);
Y = *rand(,N); % 随机生成一组横纵坐标取值均在(,)之间的点,X Y 分别代表横纵坐标
plot(X, Y, 'r*'); % 绘出原始的数据点
xlabel('X');
ylabel('Y');
title('聚类之前的数据点');
n = ; %将所有的数据点分为两类
m = ; %迭代次数
eps = 1e-; % 迭代结束的阈值
u1 = [X(),Y()]; %初始化第一个聚类中心
u2 = [X(),Y()]; %初始化第二个聚类中心
U1 = zeros(,);
U2 = zeros(,); %U1,U2 用于存放各次迭代两个聚类中心的横纵坐标
U1(:,) = u1;
U2(:,) = u2;
D = zeros(,N); %初始化数据点与聚类中心的距离
while(abs(U1(,m) - U1(,m+)) > eps || abs(U1(,m) - U1(,m+) > eps || abs(U2(,m) - U2(,m+)) > eps || abs(U2(,m) - U2(,m+)) > eps))
m = m +;
% 计算所有点到两个聚类中心的距离
for i = : N
D(,i) = sqrt((X(i) - U1(,m))^ + (Y(i) - U1(,m))^);
end
for i = : N
D(,i) = sqrt((X(i) - U2(,m))^ + (Y(i) - U2(,m))^);
end
A = zeros(,N); % A用于存放第一类的数据点
B = zeros(,N); % B用于存放第二类的数据点
for k = : N
[MIN,index] = min(D(:,k));
if index == % 点属于第一个聚类中心
A(,k) = X(k);
A(,k) = Y(k);
else % 点属于第二个聚类中心
B(,k) = X(k);
B(,k) = Y(k);
end
end
indexA = find(A(,:) ~= ); % 找出第一类中的点
indexB = find(B(,:) ~= ); % 找出第二类中的点
U1(,m+) = mean(A(,indexA));
U1(,m+) = mean(A(,indexA));
U2(,m+) = mean(B(,indexB));
U2(,m+) = mean(B(,indexB)); % 更新两个聚类中心
end
figure;
plot(A(,indexA) , A(,indexA), '*b'); % 作出第一类点的图形
hold on
plot(B(,indexB) , B(,indexB), 'oy'); %作出第二类点的图形
hold on
centerx = [U1(,m) U2(,m)];
centery = [U1(,m) U2(,m)];
plot(centerx , centery, '+g'); % 画出两个聚类中心点
xlabel('X');
ylabel('Y');
title('聚类之后的数据点');
disp(['迭代的次数为:',num2str(m)]);

得到的分类结果如下:

K均值聚类算法的MATLAB实现

K均值聚类算法的MATLAB实现

50个随机生成的点分为两类迭代只需要4步,从上图来看,分类的效果还是不错的。但是每次运行可能分类的结果会不一样,这是因为这些点是随机生成的,而且也没有明确的分类标准的缘故。

上一篇:redis出现错误:NOAUTH Authentication required.


下一篇:modelsim(2) - vcd (dump, 查看,格式理解)