二叉搜索树2
BST基础操作:
1.判断BST的合法性
这里是有坑的,如果很简单的认为只需要节点与左子树和右子树进行比较的话,那么代码就是
boolean isValidBST(TreeNode root) {
if (root == null) return true;
if (root.left != null && root.val <= root.left.val)
return false;
if (root.right != null && root.val >= root.right.val)
return false;
return isValidBST(root.left)
&& isValidBST(root.right);
}
但是这个算法出现了错误,BST 的每个节点应该要小于右边子树的所有节点,下面这个二叉树显然不是 BST,因为节点 10 的右子树中有一个节点 6,但是我们的算法会把它判定为合法 BST:
出现问题的原因在于,对于每一个节点root
,代码值检查了它的左右孩子节点是否符合左小右大的原则;但是根据 BST 的定义,root
的整个左子树都要小于root.val
,整个右子树都要大于root.val
。
问题是,对于某一个节点root
,他只能管得了自己的左右子节点,怎么把root
的约束传递给左右子树呢?
请看正确的代码:
boolean isValidBST(TreeNode root) {
return isValidBST(root, null, null);
}
/* 限定以 root 为根的子树节点必须满足 max.val > root.val > min.val */
boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
// base case
if (root == null) return true;
// 若 root.val 不符合 max 和 min 的限制,说明不是合法 BST
if (min != null && root.val <= min.val) return false;
if (max != null && root.val >= max.val) return false;
// 限定左子树的最大值是 root.val,右子树的最小值是 root.val
return isValidBST(root.left, min, root)
&& isValidBST(root.right, root, max);
}
我们通过使用辅助函数,增加函数参数列表,在参数中携带额外信息,将这种约束传递给子树的所有节点,这也是二叉树算法的一个小技巧吧。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!在递归的题目中,通过额外的参数来加以限制的技巧用的很多。
2.在 BST 中搜索一个数
如果是在二叉树中寻找元素,可以这样写代码:
boolean isInBST(TreeNode root, int target) {
if (root == null) return false;
if (root.val == target) return true;
// 当前节点没找到就递归地去左右子树寻找
return isInBST(root.left, target)
|| isInBST(root.right, target);
}
首先这种写法中的()|| () 就很有技巧,表示两种之中只要有一个符合就行,很常用
但是这种写法针对的是普通二叉树,完全没有利用二叉搜索树的特性那么应该如何充分利用信息,把 BST 这个「左小右大」的特性用上?
很简单,其实不需要递归地搜索两边,类似二分查找思想,根据target
和root.val
的大小比较,就能排除一边。我们把上面的思路稍稍改动:
boolean isInBST(TreeNode root, int target) {
if (root == null) return false;
if (root.val == target)
return true;
if (root.val < target)
return isInBST(root.right, target);
if (root.val > target)
return isInBST(root.left, target);
// root 该做的事做完了,顺带把框架也完成了,妙
}
这里可以抽象出一套针对 BST 的遍历框架:!!!!!!!!!!!!!!!!!!!!!
void BST(TreeNode root, int target) {
if (root.val == target)
// 找到目标,做点什么
if (root.val < target)
BST(root.right, target);
if (root.val > target)
BST(root.left, target);
}
这个代码框架其实和二叉树的遍历框架差不多,无非就是利用了 BST 左小右大的特性而已。
3.在 BST 中插入一个数
对数据结构的操作无非遍历 + 访问,遍历就是「找」,访问就是「改」。具体到这个问题,插入一个数,就是先找到插入位置,然后进行插入操作。
上一个问题,我们总结了 BST 中的遍历框架,就是「找」的问题。直接套框架,加上「改」的操作即可。一旦涉及「改」,函数就要返回TreeNode
类型,并且对递归调用的返回值进行接收。
框架与上图一样:
TreeNode deleteNode(TreeNode root, int key) {
if (root.val == key) {
// 找到啦,进行删除
} else if (root.val > key) {
// 去左子树找
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
// 去右子树找
root.right = deleteNode(root.right, key);
}
return root;
}
至于这里删除的情况,可以做一下分类讨论的:
如果删除的是叶子节点,即BTS的末尾,那么直接删除
if (root.left == null && root.right == null)
return null;
如果只有一个非空子节点,那么它要让这个孩子接替自己的位置。
// 排除了情况 1 之后
if (root.left == null) return root.right;
if (root.right == null) return root.left;
如果该节点有有两个子节点,麻烦了,为了不破坏 BST 的性质,A
必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。我们以第二种方式讲解。
if (root.left != null && root.right != null) {
// 找到右子树的最小节点
TreeNode minNode = getMin(root.right);
// 把 root 改成 minNode
root.val = minNode.val;
// 转而去删除 minNode
root.right = deleteNode(root.right, minNode.val);
}
总体代码如下:
TreeNode deleteNode(TreeNode root, int key) {
if (root == null) return null;
if (root.val == key) {
// 这两个 if 把情况 1 和 2 都正确处理了
if (root.left == null) return root.right;
if (root.right == null) return root.left;
// 处理情况 3
TreeNode minNode = getMin(root.right);
root.val = minNode.val;
root.right = deleteNode(root.right, minNode.val);
} else if (root.val > key) {
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
root.right = deleteNode(root.right, key);
}
return root;
}
TreeNode getMin(TreeNode node) {
// BST 最左边的就是最小的
while (node.left != null) node = node.left;
return node;
}
删除操作就完成了。注意一下,这个删除操作并不完美,因为我们一般不会通过root.val = minNode.val
修改节点内部的值来交换节点,而是通过一系列略微复杂的链表操作交换root
和minNode
两个节点。
因为具体应用中,val
域可能会是一个复杂的数据结构,修改起来非常麻烦;而链表操作无非改一改指针,而不会去碰内部数据。
不过这里我们暂时忽略这个细节,旨在突出 BST 基本操作的共性,以及借助框架逐层细化问题的思维方式。
1、如果当前节点会对下面的子节点有整体影响,可以通过辅助函数增长参数列表,借助参数传递信息。
2、在二叉树递归框架之上,扩展出一套 BST 代码框架:
void BST(TreeNode root, int target) {
if (root.val == target)
// 找到目标,做点什么
if (root.val < target)
BST(root.right, target);
if (root.val > target)
BST(root.left, target);
}
3、根据代码框架掌握了 BST 的增删查改操作。