-
题意:一长度为\(n\)的序列,有\(m\)个限制条件,问有多少排列方法使得题目所给的\(m\)个限制条件都满足.
-
题解:\(n\)给的范围很小,我们可以状态压缩,\(v[num][j]\)表示题目所给的限制条件前\(num\)个数最多不大于\(y\)的个数,我们可以枚举所有情况,然后判断每个状态是否和题目所给的条件冲突,如果冲突,我们就不转移.
-
代码:
#include <bits/stdc++.h> #define ll long long #define fi first #define se second #define pb push_back #define me memset #define rep(a,b,c) for(int a=b;a<=c;++a) #define per(a,b,c) for(int a=b;a>=c;--a) const int N = 1e3 + 10; const int mod = 1e9 + 7; const int INF = 0x3f3f3f3f; using namespace std; typedef pair<int,int> PII; typedef pair<ll,ll> PLL; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} int n,m; int v[25][25]; ll dp[1<<20]; int main() { ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); cin>>n>>m; rep(i,0,20){ rep(j,0,20){ v[i][j]=INF; } } rep(i,1,m){ int x,y,z; cin>>x>>y>>z; v[x][y-1]=min(v[x][y-1],z); } dp[0]=1; rep(i,1,(1<<n)-1){ int num=0; rep(j,0,n-1) if(i&(1<<j)) num++; int sum=0; bool flag=true; rep(j,0,n-1){ if(i&(1<<j)) sum++; if(sum>v[num][j]){ flag=false; break; } } if(flag){ rep(j,0,n-1){ if(i&(1<<j)){ dp[i]+=dp[i^(1<<j)]; } } } } cout<<dp[(1<<n)-1]<<'\n'; return 0; }