HDU 4945 2048
题意:给定一个序列,求有多少个子序列能合成2048
思路:把2,4,8..2048这些数字拿出来考虑就能够了,其它数字不管怎样都不能參与组成。那么在这些数字基础上,dp[i][j]表示到第i个数字,和为j的情况数,然后对于每一个数枚举取多少个,就能够利用组合数取进行状态转移,这里有一个剪枝,就是假设加超过2048了,那么后面数字的组合数的和所有都是加到2048上面,能够利用公式一步求解,这种整体复杂度就能够满足题目了。然后这题时限卡得紧啊。10W内的逆元不先预处理出来就超时。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const int MOD = 998244353; inline void scanf_(int &num)//无负数
{
char in;
while((in=getchar()) > '9' || in<'0') ;
num=in-'0';
while(in=getchar(),in>='0'&&in<='9')
num*=10,num+=in-'0';
} int n, v[2049], mi[15], m, cnt[15];
int dp[15][2049], mi2[100005], invv[100005];
bool istwo[2049]; void init() {
int num;
m = 0;
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i < n; i++) {
scanf_(num);
if (!istwo[num]) {
m++;
continue;
}
else cnt[v[num]]++;
}
} int inv(int n) {
int ans = 1;
int k = MOD - 2;
while (k) {
if (k&1) ans = (ll)ans * n % MOD;
n = (ll)n * n % MOD;
k >>= 1;
}
return ans;
} int solve() {
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 1; i <= 12; i++) {
for (int j = 0; j <= 2048; j += mi[i]) {
if (dp[i - 1][j] == 0) continue;
int C = 1, s = 0;
int sum = j;
for (int k = 0; k <= cnt[i]; k++) {
int x = sum;
if (x == 2048) {
dp[i][x] = (ll)dp[i - 1][j] * (mi2[cnt[i]] - s) % MOD + dp[i][x];
if (dp[i][x] < 0) dp[i][x] += MOD;
if (dp[i][x] >= MOD) dp[i][x] -= MOD;
break;
}
if (x % mi[i + 1])
x = x - mi[i];
dp[i][x] = (ll)dp[i - 1][j] * C % MOD + dp[i][x];
if (dp[i][x] >= MOD) dp[i][x] -= MOD;
s += C;
if (s >= MOD) s -= MOD;
C = (ll)C * (cnt[i] - k) % MOD * invv[k + 1] % MOD;
sum += mi[i];
}
}
}
return (ll)dp[12][2048] * mi2[m] % MOD;
} int main() {
memset(istwo, false, sizeof(istwo));
memset(v, -1, sizeof(v));
mi[0] = 0; v[0] = 0;
for (int i = 1, j = 1; i <= 2048; i *= 2, j++) {
istwo[i] = true;
v[i] = j;
mi[j] = i;
}
mi[13] = 4096;
for (int i = 1; i <= 2048; i++) {
if (v[i] == -1)
v[i] = v[i - 1];
}
mi2[0] = 1;
for (int i = 1; i <= 100000; i++) {
invv[i] = inv(i);
mi2[i] = mi2[i - 1] * 2 % MOD;
}
int cas = 0;
while (~scanf("%d", &n) && n) {
init();
printf("Case #%d: %d\n", ++cas, solve());
}
return 0;
}