Pytorch-基础入门之LSTM

学习Pytorch的目的就是用LSTM来对舆情的数据进行处理,之后那个项目全部做好会发布出来。LSTM也是很经典的网络了,一种RNN网络,在这里也不做赘述了。

某型的一些说明:

hidden layer dimension is 100
number of hidden layer is 1

这一块的话与上一篇逻辑斯蒂回归使用的是相同的数据集MNIST。

第一部分:构造模型

# Import Libraries
import torch
import torch.nn as nn
from torch.autograd import Variable

class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
        super(LSTMModel, self).__init__()
        
        # Hidden dimensions
        self.hidden_dim = hidden_dim

        # Number of hidden layers
        self.layer_dim = layer_dim

        # LSTM
        self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True) # batch_first=True (batch_dim, seq_dim, feature_dim)

        # Readout layer
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        # Initialize hidden state with zeros
        h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_()

        # Initialize cell state
        c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_()

        # 28 time steps
        # We need to detach as we are doing truncated backpropagation through time (BPTT)
        # If we don't, we'll backprop all the way to the start even after going through another batch
        out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))

        # Index hidden state of last time step
        # out.size() --> 100, 28, 100
        # out[:, -1, :] --> 100, 100 --> just want last time step hidden states! 
        out = self.fc(out[:, -1, :]) 
        # out.size() --> 100, 10
        return out
    
input_dim = 28
hidden_dim = 100
layer_dim = 1
output_dim = 10
model = LSTMModel(input_dim, hidden_dim, layer_dim, output_dim)

error = nn.CrossEntropyLoss()

learning_rate = 0.1
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) 

  第二部分:训练模型

# Number of steps to unroll
seq_dim = 28  
loss_list = []
iteration_list = []
accuracy_list = []
count = 0
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # Load images as a torch tensor with gradient accumulation abilities
        images = images.view(-1, seq_dim, input_dim).requires_grad_()

        # Clear gradients w.r.t. parameters
        optimizer.zero_grad()

        # Forward pass to get output/logits
        # outputs.size 100, 10
        outputs = model(images)

        # Calculate Loss: softmax --> cross entropy loss
        loss = error(outputs, labels)

        # Getting gradients
        loss.backward()

        # Updating parameters
        optimizer.step()

        count += 1

        if count % 500 == 0:
            # Calculate Accuracy         
            correct = 0
            total = 0
            for images, labels in test_loader:
                
                images = images.view(-1, seq_dim, input_dim)

                # Forward pass only to get logits/output
                outputs = model(images)

                # Get predictions from the maximum value
                _, predicted = torch.max(outputs.data, 1)

                # Total number of labels
                total += labels.size(0)

                # Total correct predictions
                correct += (predicted == labels).sum()

            accuracy = 100 * correct / total
            
            loss_list.append(loss.data.item())
            iteration_list.append(count)
            accuracy_list.append(accuracy)
            
            # Print Loss
            print('Iteration: {}. Loss: {}. Accuracy: {}'.format(count, loss.data.item(), accuracy))

 结果:

Iteration: 500. Loss: 2.2601425647735596. Accuracy: 19
Iteration: 1000. Loss: 0.9044000506401062. Accuracy: 71
Iteration: 1500. Loss: 0.33562779426574707. Accuracy: 88
Iteration: 2000. Loss: 0.29831066727638245. Accuracy: 92
Iteration: 2500. Loss: 0.20772598683834076. Accuracy: 94
Iteration: 3000. Loss: 0.13703776895999908. Accuracy: 95
Iteration: 3500. Loss: 0.1824885755777359. Accuracy: 95
Iteration: 4000. Loss: 0.021043945103883743. Accuracy: 96
Iteration: 4500. Loss: 0.13939177989959717. Accuracy: 96
Iteration: 5000. Loss: 0.032742198556661606. Accuracy: 96
Iteration: 5500. Loss: 0.1308797001838684. Accuracy: 96

 第三部分:可视化展示

# visualization loss 
plt.plot(iteration_list,loss_list)
plt.xlabel("Number of iteration")
plt.ylabel("Loss")
plt.title("LSTM: Loss vs Number of iteration")
plt.show()

# visualization accuracy 
plt.plot(iteration_list,accuracy_list,color = "red")
plt.xlabel("Number of iteration")
plt.ylabel("Accuracy")
plt.title("LSTM: Accuracy vs Number of iteration")
plt.savefig('graph.png')
plt.show()

 结果:

  Pytorch-基础入门之LSTM   Pytorch-基础入门之LSTM  

 

上一篇:OCR学习


下一篇:理解Pytorch中LSTM的输入输出参数含义