快速搭建CNN(卷积神经网络),实现分类MINST数据集(学习笔记三)

1. 加载MINST数据集

python代码:

from torchvision import  datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# load train data
train_data = datasets.MNIST(
    root='data', # save in the directory data
    train=True, # True means train data, False means test data
    download=True,
    transform=ToTensor() # (0, 255) to (0, 1)
)
# load test data
test_data = datasets.MNIST(
    root='data',
    train=False, #True means train data, False means test data
    download=True,
    transform=ToTensor()
)

下载成功结果:
快速搭建CNN(卷积神经网络),实现分类MINST数据集(学习笔记三)
添加下列代码显示其中一条数据:

print(train_data.data.size())
print(train_data.targets.size())
plt.imshow(train_data.data[130].numpy(), cmap='gray')
plt.title('%i' % train_data.targets[130])
plt.show()

数据如下图所示:
快速搭建CNN(卷积神经网络),实现分类MINST数据集(学习笔记三)

2. 快速构建CNN网络

python代码:

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1, # size of input channels
                out_channels=16, # size of input channels
                kernel_size=(5, 5), # size of filter
                stride=(1, 1), # step of filter
                padding=2, # padding num
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, (5, 5), (1, 1), 2),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.flat = nn.Flatten() # flattern the result
        self.out = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.flat(x)
        out = self.out(x)
        return out
上一篇:2021.11.10考试总结[冲刺NOIP模拟27]


下一篇:【nvidia jetson xavier】 Linux系统安装+Deepstream 5.1环境部署