import torch
import torch.nn as nn
import torchvision
from context_block import ContextBlock
class LBwithGCBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(LBwithGCBlock, self).__init__()
self.downsample = downsample
self.conv1 = nn.Conv2d(in_channels=inplanes,out_channels=planes,kernel_size=1,stride=1,padding=0)
self.conv1_bn = nn.BatchNorm2d(planes)
self.conv1_bn_relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels=planes, out_channels=planes, kernel_size=3, stride=stride, padding=1)
self.conv2_bn = nn.BatchNorm2d(planes)
self.conv2_bn_relu = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(in_channels=planes, out_channels=planes * self.expansion, kernel_size=1, stride=1, padding=0)
self.conv3_bn = nn.BatchNorm2d(planes * self.expansion)
self.gcb = ContextBlock(planes * self.expansion,ratio=2)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1_bn_relu(self.conv1_bn(self.conv1(x)))
out = self.conv2_bn_relu(self.conv2_bn(self.conv2(out)))
out = self.conv3_bn(self.conv3(out))
out = self.gcb(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
return self.relu(out)
def computeGCD(a,b):
while a != b:
if a > b:
a = a - b
else:
b = b - a
return b
def GroupDeconv(inplanes, planes, kernel_size, stride, padding, output_padding):
groups = computeGCD(inplanes, planes)
return nn.Sequential(
nn.ConvTranspose2d(in_channels=inplanes, out_channels=2*planes, kernel_size=kernel_size,
stride=stride, padding=padding, output_padding=output_padding, groups=groups),
nn.Conv2d(2*planes, planes, kernel_size=1, stride=1, padding=0)
)
class LPN(nn.Module):
def __init__(self, nJoints):
super(LPN, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(LBwithGCBlock, 64, 3)
self.layer2 = self._make_layer(LBwithGCBlock, 128, 4, stride=2)
self.layer3 = self._make_layer(LBwithGCBlock, 256, 6, stride=2)
self.layer4 = self._make_layer(LBwithGCBlock, 512, 3, stride=1)
self.deconv_layers = self._make_deconv_group_layer()
self.final_layer = nn.Conv2d(in_channels=self.inplanes,out_channels=nJoints,kernel_size=1,stride=1,padding=0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_deconv_group_layer(self):
layers = []
planes = 256
for i in range(2):
planes = planes//2
# layers.append(nn.ConvTranspose2d(in_channels=self.inplanes,out_channels=256,kernel_size=4,stride=2,padding=1,output_padding=0,groups=computeGCD(self.inplanes,256)))
layers.append(GroupDeconv(inplanes=self.inplanes, planes=planes, kernel_size=4, stride=2, padding=1, output_padding=0))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
self.inplanes = planes
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.deconv_layers(x)
x = self.final_layer(x)
return x
if __name__ == '__main__':
model = LPN(nJoints=16)
print(model)
data = torch.randn(1,3,256,192)
out = model(data)
print(out.shape)