课程请见 《PyTorch深度学习实践》
# PyTorch
import torch
from torch import nn
from torch.utils import data
from torchvision import datasets
from torchvision import transforms
from torch import optim
# For plotting
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = datasets.MNIST(root='../data', download=False, train=True, transform=transform)
test_data = datasets.MNIST(root='../data', download=False, train=False, transform=transform)
train_iter = data.DataLoader(
dataset=train_data,
batch_size=batch_size,
shuffle=True
)
test_iter = data.DataLoader(
dataset=test_data,
shuffle=False,
batch_size=batch_size
)
class Module(nn.Module):
def __init__(self, activate):
super(Module, self).__init__()
self.l1 = nn.Linear(784, 512)
self.l2 = nn.Linear(512, 256)
self.l3 = nn.Linear(256, 128)
self.l4 = nn.Linear(128, 64)
self.l5 = nn.Linear(64, 10)
self.activate = activate
def forward(self, x):
x = x.reshape(-1, 784)
y1 = self.activate(self.l1(x))
y2 = self.activate(self.l2(y1))
y3 = self.activate(self.l3(y2))
y4 = self.activate(self.l4(y3))
y5 = self.l5(y4)
return y5
def init_weight(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.1)
def test(net, test_iter):
total = 0
correct = 0
for x, y in test_iter:
with torch.no_grad():
_y = net(x)
_, predicted = torch.max(_y.data, dim=1)
total += y.shape[0]
correct += (predicted == y).sum().item()
return correct / total
net1 = Module(nn.ReLU())
net2 = Module(torch.sigmoid)
net1.apply(init_weight)
net2.apply(init_weight)
lr = 0.01
optimizer1 = optim.SGD(net1.parameters(), lr=lr)
optimizer2 = optim.SGD(net2.parameters(), lr=0.03)
criterion = nn.CrossEntropyLoss()
num_epoch = 25
correct_rate1 = []
correct_rate2 = []
for epoch in range(num_epoch):
for index, data in enumerate(train_iter, 0):
x, y = data
_y1 = net1(x)
_y2 = net2(x)
loss1 = criterion(_y1, y)
loss2 = criterion(_y2, y)
optimizer1.zero_grad()
loss1.backward()
optimizer1.step()
optimizer2.zero_grad()
loss2.backward()
optimizer2.step()
rate1 = test(net1, test_iter)
correct_rate1.append(rate1)
rate2 = test(net2, test_iter)
correct_rate2.append(rate2)
print('第{}轮,正确率为{} 和{}'.format(epoch + 1, rate1, rate2))
plt.figure()
plt.plot(list(range(num_epoch)), correct_rate1, c='b', label='Relu')
plt.plot(list(range(num_epoch)), correct_rate2, c='r', label='Sigmoid')
plt.xlabel('Epoch')
plt.ylabel('Correct Rate')
plt.legend()
plt.grid()
plt.show()