Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)

D. Valid Sets
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.

We call a set S of tree nodes valid if following conditions are satisfied:

  1. S is non-empty.
  2. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
  3. Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维).

Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007(109 + 7).

Input

The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).

The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).

Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.

Output

Print the number of valid sets modulo 1000000007.

Examples
input
1 4
2 1 3 2
1 2
1 3
3 4
output
8
input
0 3
1 2 3
1 2
2 3
output
3
input
4 8
7 8 7 5 4 6 4 10
1 6
1 2
5 8
1 3
3 5
6 7
3 4
output
41
Note

In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.

【题意】给你一棵树,每个节点都有一个 权值a[i],定义一种集合S,不为空,若u,v,属于S,则u->v路径上的所有的点都属于S,且集合中最大权值-最小权值<=d,求 这样的集合个数。

【分析】考虑算每一个节点的贡献。枚举每一个节点,使其成为这个集合的最小值,然后dfs,看他能走多远。dp[u]表示当前节点的子树能形成多少包括u的集合,则dp[u]=dp[u]*(dp[v]+1),v为u的儿子,+1是因为这个儿子形成的集合我可以不取。但是对于权值相同的节点可能形成 一些重复计算的集合,所以要标记一下。

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 2e3+;;
const int M = ;
const int mod = 1e9+;
const int mo=;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,d;
int a[N],vis[N][N];
ll dp[N],ans;
vector<int>edg[N];
void dfs(int u,int fa,int rt){
if(a[u]<a[rt]||a[u]-a[rt]>d)return;
if(a[u]==a[rt]){
if(vis[rt][u])return;
else vis[u][rt]=vis[rt][u]=;
}
dp[u]=;
for(int v : edg[u]){
if(v==fa)continue;
dfs(v,u,rt);
dp[u]=(dp[u]*(dp[v]+))%mod;
}
}
int main(){
scanf("%d%d",&d,&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=,u,v;i<n;i++){
scanf("%d%d",&u,&v);
edg[u].pb(v);edg[v].pb(u);
}
for(int i=;i<=n;i++){
met(dp,);
dfs(i,,i);
ans=(ans+dp[i])%mod;
}
printf("%lld\n",ans);
return ;
}
上一篇:centOS安装openoffice


下一篇:aways on 配置部署(一)——准备工作