常用函数

对任意实数 \(x\)

\[x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1 \]

对任意整数 \(n\)

\[\lceil n / 2 \rceil + \lfloor n / 2 \rfloor = n \]

对任意实数 \(x \ge 0\) 和整数 \(a, b > 0\)

\[\left\lceil \dfrac{\lceil x / a \rceil}b \right\rceil = \left\lceil \dfrac x {ab} \right\rceil \]

\[\left\lfloor \dfrac{\lfloor x / a \rfloor}b \right\rfloor = \left\lfloor \dfrac x {ab} \right\rfloor \]

\[\left\lceil \dfrac a b \right\rceil \le \dfrac {a + (b - 1)} b \]

\[\left\lfloor \dfrac a b \right\rfloor \ge \dfrac {a - (b - 1)} b \]

对于 \(e\)

\[e^x = \sum_{i = 1}^{\infty} \frac {x^i} {i!} \]

由此知

\[e^x \ge 1 + x \]

\(|x| \le 1\) 时,我们有近似估计

\[1 + x \le e^x \le 1 + x + x^2 \]

对于 \(x \to 0\)

\[\lim_{n \to \infty} (1 + \frac x n) = e^x \]

对数

\[a^{log_b c} = c^{log_b a} \]

(两边取 \(ln\) 证明)

\(|x| < 1\)

\[ln(1 + x) = \sum_{i = 1} ^ \infty (-1)^{i - 1} \frac{x ^ i} i \]

对于 \(x > -1\)

\[\frac x {1 + x} \le ln(1 + x) \le x \]

\[lg(n!) = \Theta(nlgn) \]

斐波那契

\[F_0 = 0, F_1 = 1 \]

\[F_i = F_{i - 1} + F_{i - 2} \]

黄金分割率 \(\phi\)\(x^2 = x + 1\) 的两个根

\[\phi = \frac{1 + \sqrt 5} 2 = 1.61803... \]

\[\hat{\phi} = \frac{1 - \sqrt 5} 2 = -0.61803... \]

\[F_i = \frac{\phi^i - \hat{\phi}^i} {\sqrt 5} \]

常用函数

上一篇:Hexo部署出现错误err: Error: Spawn failed解决方式


下一篇:Classpath resource [data/department/createDepartment.csv] does not exist