设第一套为A,第二套为B
先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关
设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可,如果c[j]=0,就意味着可以用A[j]以外的线性表达出B[i],所以不能B[i]替换A[j],否则可以
于是高斯消元求出c矩阵,问题就转化成了求二分图的最小字典序匹配
先跑一遍匈牙利判下是否无解,然后以它为基准解再贪心地求一遍答案
具体地说,你做到第i个的时候,前i-1都要固定住,其他的和普通匈牙利是一样的
#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
typedef long double ld;
const int maxn=,P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
int a[maxn][maxn*],b[maxn][maxn],c[maxn][maxn];
bool can[maxn][maxn]; inline int fpow(int x,int y){
int re=;
while(y){
if(y&) re=1ll*x*re%P;
x=1ll*x*x%P,y>>=;
}return re;
} inline void getinv(){
for(int i=;i<=N;i++){
a[i][i+N]=;
}
for(int i=;i<=N;i++){
int mi=i;
for(int j=i+;j<=N;j++) if(a[j][i]) mi=j;
swap(a[mi],a[i]);
int iv=fpow(a[i][i],P-);
for(int j=N*;j>=i;j--) a[i][j]=1ll*a[i][j]*iv%P;
for(int j=i+;j<=N;j++){
for(int k=N*;k>=i;k--) a[j][k]=(a[j][k]-1ll*a[i][k]*a[j][i])%P;
}
}
for(int i=N;i;i--){
for(int j=i-;j;j--){
for(int k=N+;k<=N*;k++) a[j][k]=(a[j][k]-1ll*a[j][i]*a[i][k])%P;
}
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++) a[i][j]=a[i][j+N];
}
} int bel[maxn],to[maxn];bool flag[maxn]; bool dfs(int x){
for(int i=;i<=N;i++){
if(!can[x][i]||flag[i]) continue;
flag[i]=;
if(!bel[i]||dfs(bel[i])){bel[i]=x,to[x]=i;return ;}
}return ;
}
bool dfs2(int x,int y){
for(int i=;i<=N;i++){
if(!can[x][i]||flag[i]) continue;
flag[i]=;
if(bel[i]==y||(bel[i]>y&&dfs2(bel[i],y))){to[x]=i,bel[i]=x;return ;}
}return ;
} int main(){
//freopen("","r",stdin);
N=rd();
for(int i=;i<=N;i++){
for(int j=;j<=N;j++) a[i][j]=rd();
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++) b[i][j]=rd();
}
getinv();
for(int i=;i<=N;i++){
for(int j=;j<=N;j++){
for(int k=;k<=N;k++){
c[i][j]=(c[i][j]+1ll*b[i][k]*a[k][j])%P;
}
}
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++){
if(c[i][j]) can[j][i]=;
}
}/*
for(int i=rd();i;i--){
int a=rd(),b=rd();
can[a][b]=1;
}*/
bool bl=;
for(int i=;i<=N;i++){
CLR(flag,);
if(!dfs(i)){bl=;break;}
}
if(!bl) printf("NIE\n");
else{
printf("TAK\n");
for(int i=;i<=N;i++){
CLR(flag,);
dfs2(i,i);
}
for(int i=;i<=N;i++){
printf("%d\n",to[i]);
}
}
return ;
}