【HDOJ1384】【差分约束+SPFA】

http://acm.hdu.edu.cn/showproblem.php?pid=1384

Intervals

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4638    Accepted Submission(s): 1765

Problem Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:

> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

> writes the answer to the standard output

 
Input
The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

Process to the end of file.

Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
 
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
 
Sample Output
6

题目大意:给若干个区间,并且每个区间给定一个数C,表示集合S至少含有这个区间内C个整数,求满足要求的S的最小元素数

题目分析:典型的差分约束题目,即能根据题设条件列出若干不等式,并且所求问题中含有最小【或最大,最多,最少】字眼。都可以列出不等式,然后转化为最短路或者最长路。

     本题要求区间【LI,RI】内含有CI个整数,即可令S【I】表示最终集合S在【0,I】区间内含有的整数,则本题要求即可化为S【RI】-S【LI-1】>= CI【条件不等式一】

     又因为S【I】-S【I-1】>= 0 && S【I】-S【I-1】<= 1【条件不等式二、三】

       题目所求最小元素数ANS  即S【Rmax】-s【Lmin-1】>= ANS  【所求不等式】

      由所求不等式确定所求最长路还是最短路,从而据此再根据条件不等式可以建图,SPFA跑一遍即可。

【PS:边的结构体数组一定要开大一点,不然会TLE到怀疑人生...】

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int INF=;
struct edge{
int to;
int len;
int next;
}EDGE[];
queue<int>pq;
int edge_cnt=,dist[],stk[],head[],n;
void add(int x,int y,int z)
{
EDGE[edge_cnt].to=y;
EDGE[edge_cnt].next=head[x];
EDGE[edge_cnt].len=z;
head[x]=edge_cnt++;
}
void spfa()
{
while(!pq.empty())
{
int qwq=pq.front();pq.pop();
stk[qwq]=;
for(int i = head[qwq] ; i != - ; i = EDGE[i].next)
{
int v=EDGE[i].to;
if(dist[v]<dist[qwq]+EDGE[i].len)
{
dist[v]=dist[qwq]+EDGE[i].len;
if(!stk[v]){
stk[v]=;
pq.push(v);
}
}
}
}
}
int main()
{
while(scanf("%d",&n)==)
{
edge_cnt=;
int mmin=;
int mmax=-;
memset(dist,-,sizeof(dist));
memset(stk,,sizeof(stk));
memset(head,-,sizeof(head));
while(!pq.empty())pq.pop();
while(n--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(a)
add(a-,b,c);
else
{
add(,b,c);
}
mmax=max(b,mmax);
mmin=min(a,mmin);
}
if(mmin==)
{
dist[]=;
add(,,);
add(,,-);
mmin=;
stk[]=;
pq.push();
}
else
{
stk[mmin-]=;
pq.push(mmin-);
dist[mmin-]=;
}
for(int i = mmin-;i<mmax;i++)
{
add(i+,i,-);
add(i,i+,);
}
spfa();
printf("%d\n",dist[mmax]);
}
return ;
}
上一篇:CS50.3


下一篇:spring boot应用测试框架介绍