Nowcoder156F 托米的游戏/CF280C Game on tree 期望

传送门

题意:给出一棵树,在每一轮中,随机选择一个点将它与它的子树割掉,最后割掉所有点时游戏结束,问游戏期望进行多少轮。$N \leq 10^5$


和的期望等于期望的和,我们考虑每一个点对最后答案的贡献。

考虑到如果把某一个点$u$的任意一个祖先割掉,$u$就不会产生贡献,而只有在割掉$u$的祖先之前割掉$u$,$u$才能产生$1$的贡献,所以对于某一个点$u$,它产生贡献的概率为$\frac{1}{dep_u}$,所以我们求一边$\sum\frac{1}{dep_i}$就可以了

 #include<bits/stdc++.h>
 using namespace std;

  , MOD = ;
 struct Edge{
     int end , upEd;
 }Ed[MAXN << ];
 int head[MAXN] , dep[MAXN] , N , sum , cntEd;

 inline void addEd(int a , int b){
     Ed[++cntEd].end = b;
     Ed[cntEd].upEd = head[a];
     head[a] = cntEd;
 }

 inline long long poww(long long a , int b){
     ;
     while(b){
         )
             times = times * a % MOD;
         a = a * a % MOD;
         b >>= ;
     }
     return times;
 }

 void dfs(int now , int fa){
     dep[now] = dep[fa] + ;
     sum = (sum + poww(dep[now] , MOD - )) % MOD;
     for(int i = head[now] ; i ; i = Ed[i].upEd)
         if(!dep[Ed[i].end])
             dfs(Ed[i].end , now);
 }

 int main(){
     cin >> N;
      ; i < N ; i++){
         int a , b;
         cin >> a >> b;
         addEd(a , b);
         addEd(b , a);
     }
     dfs( , );
     cout << sum % MOD;
     ;
 }
上一篇:java之生成jar包


下一篇:oracle查询查询出某字段为空后前台不显示的小测试1