题目链接:https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=0&problem=4533&mosmsg=Submission+received+with+ID+26558714
点容量:拆点,连一条容量为 \(1\) 费用为 \(0\) 的边
跑容量为 \(2\) 的最小费用流即可
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 50010;
const int INF = 1000000007;
int n, m;
int h[maxn], cnt = 0;
struct E{
int from, to, cost, cap, next;
}e[maxn << 1];
void add(int u, int v, int w, int c){
e[++cnt].to = v;
e[cnt].from = u;
e[cnt].cap = c;
e[cnt].cost = w;
e[cnt].next = h[u];
h[u] = cnt;
}
int inq[maxn]; // 是否在队列中
int d[maxn]; // Bellman-Ford
int p[maxn]; // 上一条弧
int a[maxn]; // 可改进量
bool BellmanFord(int s, int t, int flow_limit, int& flow, int& cost) {
memset(d, 0x3f, sizeof(d));
memset(inq, 0, sizeof(inq));
memset(a, 0, sizeof(a));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = h[u]; i != -1 ; i = e[i].next) {
if(e[i].cap && d[e[i].to] > d[u] + e[i].cost) {
d[e[i].to] = d[u] + e[i].cost;
p[e[i].to] = i;
a[e[i].to] = min(a[u], e[i].cap);
if(!inq[e[i].to]) { Q.push(e[i].to); inq[e[i].to] = 1; }
}
}
}
if(d[t] == INF) return false;
if(flow + a[t] > flow_limit) a[t] = flow_limit - flow;
flow += a[t];
cost += d[t] * a[t];
for(int u = t; u != s; u = e[p[u]].from) {
e[p[u]].cap -= a[t];
e[p[u]^1].cap += a[t];
}
return true;
}
// 需要保证初始网络中没有负权圈
int MincostFlow(int s, int t, int flow_limit, int& cost) {
int flow = 0; cost = 0;
while(flow < flow_limit && BellmanFord(s, t, flow_limit, flow, cost));
return flow;
}
ll read(){ ll s = 0, f = 1; char ch = getchar(); while(ch < ‘0‘ || ch > ‘9‘){ if(ch == ‘-‘) f = -1; ch = getchar(); } while(ch >= ‘0‘ && ch <= ‘9‘){ s = s * 10 + ch - ‘0‘; ch = getchar(); } return s * f; }
int main(){
while(scanf("%d%d", &n, &m) == 2 && n) {
memset(h, -1, sizeof(h)); cnt = 1;
for(int i = 2 ; i <= n - 1 ; ++i){ // 拆点
add(i, i + n, 0, 1);
add(i + n, i, 0, 0);
}
int u, v, w;
for(int i = 1 ; i <= m ; ++i){ // 连边
scanf("%d%d%d", &u, &v, &w);
if(u != 1 && u != n) u += n;
add(u, v, w, 1); // 出点连入点
add(v, u, -w, 0);
}
int cost = 0;
MincostFlow(1, n, 2, cost);
printf("%d\n", cost);
}
return 0;
}