B树与B+树不同的地方在于插入是从底向上进行(当然查找与二叉树相同,都是从上往下)
二者都通常用于数据库和操作系统的文件系统中,非关系型数据库索引如mongoDB用的B树,大部分关系型数据库索引使用的是B+树。
一、B树(也叫B-树,注意并不是读B减树哦)
m阶B树需满足以下要求:
1、m阶B树:m阶指的是分叉的个数最多为m个。即一个非叶子节点最多可以有m个子节点。
2、子节点:一个叉连接的表示一个子节点,如果所示CFJM 表示一个子节点,其中CFJM表示4个元素。一个非叶子节点可以表示为[A0 k1 A1 k2 A2……kn An],其中ceil(m/2) -1 <= k <= m-1个,因此ceil(m/2) <= A <= m,A表示指向子节点的指针。
3、根节点至少有两个子节点。
4、所有的叶子在同一层。
上图所示并未画出叶子节点,因为叶子结点不包含元素,所以可以把叶子结点看成在树里实际上并不存在外部结点,指向这些外部结点的指针为空,叶子结点的数目正好等于树中所包含的元素总个数加1。下图画出了叶子节点。
B树的特点可以总结为如下:
- 元素集合分布在整颗树中。
- 任何一个元素出现且只出现在一个节点中。
- 搜索有可能在非叶子节点结束。
- 因为每个节点中的元素和子树都是有序的,其搜索性能等价于在元素集合内做一次二分查找。
- B树在插入删除新的数据记录会破坏B-Tree的性质,因为在插入删除时,需要对树进行一个分裂、合并、转移等操作以保持B-Tree性质。
为什么要使用B-树作为数据库索引而不是使用二叉树?
二叉树的搜索效率是十分高的,可以达到logN,但是由于数据量巨大时,索引的大小甚至可以达到G级别,所以索引是存储在磁盘中的,每次查找只能逐一将索引树的节点加载至内存中,如果使用二叉树则I/O操作将会非常频繁,I/O次数取决于二叉树的深度。这样索引速度非常慢,因此采用B树这种多路二叉搜索树大大减少I/O次数。其中多路指的是一个节点有多个子树,并且由于所有叶子节点都在同一层,因此是平衡树。
磁盘页:查询索引时,逐一加载磁盘页,这里的磁盘页对应索引树的节点,对于m阶B树,m的大小取决于磁盘页的大小。
B+树
m阶B树具有以下几个特征:
1、有k个子树的中间节点包含有k个元素(B树中是k-1个),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点中。
2、所有的叶子结点中包含了全部元素的信息,叶子节点本身根据元素的大小顺序链接。
3、所有的中间节点元素都同时存在子节点,在子节点元素中是最大(或最小)元素。
对于根节点中的8,在其子节点中 2 5 8中是最大元素,根节点的最大元素15也是整棵树的最大元素。
什么是卫星数据?
索引元素所指向的数据记录,比如数据库中的某一行。
在B树中无论是中间节点还是叶子节点都带有卫星数据,但是在B+树中只有叶子节点带有卫星数据,中间节点仅仅是索引。左图是B树,右图是B+树。
相比B树B+树有以下几点优点:
(1)由于B+树的中间节点没有卫星数据,因此同样大小的磁盘页可以容纳更多的节点元素,即B+树相比B树更加矮胖,因此查询时的I/O次数更少。
(2)由于B树在查找时最好情况是根节点,最差情况是叶子节点;B+树都是查找到叶子节点,所以B+树的查找更加稳定。
(3)对于范围查找,例如查找3-11之间的所有数据,对于B树,查找下限3,然后中序遍历;对于B+树只需要在叶节点链表上遍历即可,范围查找的效率更高。
数据库中的聚集索引中,叶子节点直接包含卫星数据,在非聚集索引中,叶子节点带有指向卫星数据的指针。