C5 误差反向传播
计算图
构建计算图,从左向右进行计算。(正向传播)
局部计算:无论全局发生了什么,都只能根据与自己相关的信息输出接下来的结果
计算图优点:可以将中间的计算结果全部保存起来。只有这些无法令人信服,可以通过反向传播高效计算倒数。
计算图的反向传播:沿着与正方向相反的方向,乘上局部导数。
简单层实现:
把构建神经网络的“层”实现为一个类
如:负责sigmoid函数的sigmoid,负责矩阵乘积的Affine,以层为单位进行实现。
因此,这里也以层为单位进行乘法节点、加法节点
激活函数层的实现:
RelU
y={x,(x>0);0,(x<=0)}
如果正向传播时输入x大于0,反向传播会将上游的值原封不动传给下游。如果正向传播x的值小于0,反向传播中传给下游的信号将停留在此处。
在神经网络的实现中,一般假定forward()和backward()的参数是Numpy数组
Relu类有实例变量mask,该变量由True/False构成的Numpy数组,会把正向传播时的输入x的元素中小于等于0的地方保存为True,其他地方保存为False。mask变量保存了由True/False构成的Numpy数组
如果正向传播时输入值小于等于0,那么反向传播的值为0
其作用像电路开关一样,正向传播时,有电的话就把开关设置为on,没电流通过就把开关设置为off
开关为on的时候,电流直接通过,开关为off的时候没有电流通过。
sigmoid层:
正向传播时将输出保存在实例变量out中,反向传播时使用该变量out进行计算
affine/softmax层实现:
在神经网络的正向传播中,为了计算加权信号的总和,使用矩阵的乘积运算
各个数据反转的值需要汇总为偏置的元素
偏置的反向传播会对这两个数据的导数进行求和,使用np.sum对第零轴方向上的元素进行求和
Softmax-with-loss层:
softmax函数会将输入的值正规化之后再输入
输入图像通过Affine层和Relu层进行转换,10个输入通过softmax层进行正则化
分几类,输入有几个
神经网络的处理有推理和学习两个阶段,神经网络的推理通常不使用softmax层,一般会将最后一个Affine层的输出作为识别结果。
神经网络中未被正则化的输出结果有时候会被称为得分,当神经网络的推理只需要给出一个答案的情况下,此时只对得分最大值感兴趣,不需要softmax层。
但是神经网络的学习阶段需要softmax层。
神经网络学习的目的:通过调整权重参数,是的神经网络的输出接近教师标签,必须把神经网络的输出与教师标签的误差高效地传递给前面的 层。
反向传播是,要将传播的值除以批的大小,传递给前面的层是单个数据的误差。
几个层实现代码如下:
# coding: utf-8 import numpy as np from common.functions import * from common.util import im2col, col2im class Relu: def __init__(self): self.mask = None def forward(self, x): self.mask = (x <= 0) out = x.copy() out[self.mask] = 0 return out def backward(self, dout): dout[self.mask] = 0 dx = dout return dx class Sigmoid: def __init__(self): self.out = None def forward(self, x): out = sigmoid(x) # 1/(1+np.exp(-x)) self.out = out return out def backward(self, dout): dx = dout * (1.0 - self.out) * self.out return dx class Affine: def __init__(self, W, b): self.W =W self.b = b self.x = None self.original_x_shape = None # 权重和偏置参数的导数 self.dW = None self.db = None def forward(self, x): # 对应张量 self.original_x_shape = x.shape x = x.reshape(x.shape[0], -1) self.x = x out = np.dot(self.x, self.W) + self.b return out def backward(self, dout): dx = np.dot(dout, self.W.T) self.dW = np.dot(self.x.T, dout) self.db = np.sum(dout, axis=0) dx = dx.reshape(*self.original_x_shape) # 还原输入数据的形状(对应张量) return dx class SoftmaxWithLoss: def __init__(self): self.loss = None #损失 self.y = None # softmax的输出 self.t = None # 监督数据 def forward(self, x, t): self.t = t self.y = softmax(x) self.loss = cross_entropy_error(self.y, self.t) return self.loss def backward(self, dout=1): batch_size = self.t.shape[0] if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况 dx = (self.y - self.t) / batch_size else: dx = self.y.copy() dx[np.arange(batch_size), self.t] -= 1 dx = dx / batch_size return dx class Dropout: """ http://arxiv.org/abs/1207.0580 """ def __init__(self, dropout_ratio=0.5): self.dropout_ratio = dropout_ratio self.mask = None def forward(self, x, train_flg=True): if train_flg: self.mask = np.random.rand(*x.shape) > self.dropout_ratio return x * self.mask else: return x * (1.0 - self.dropout_ratio) def backward(self, dout): return dout * self.mask class BatchNormalization: """ http://arxiv.org/abs/1502.03167 """ def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None): self.gamma = gamma self.beta = beta self.momentum = momentum self.input_shape = None # Conv层的情况下为4维,全连接层的情况下为2维 # 测试时使用的平均值和方差 self.running_mean = running_mean self.running_var = running_var # backward时使用的中间数据 self.batch_size = None self.xc = None self.std = None self.dgamma = None self.dbeta = None def forward(self, x, train_flg=True): self.input_shape = x.shape if x.ndim != 2: N, C, H, W = x.shape x = x.reshape(N, -1) out = self.__forward(x, train_flg) return out.reshape(*self.input_shape) def __forward(self, x, train_flg): if self.running_mean is None: N, D = x.shape self.running_mean = np.zeros(D) self.running_var = np.zeros(D) if train_flg: mu = x.mean(axis=0) xc = x - mu var = np.mean(xc**2, axis=0) std = np.sqrt(var + 10e-7) xn = xc / std self.batch_size = x.shape[0] self.xc = xc self.xn = xn self.std = std self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu self.running_var = self.momentum * self.running_var + (1-self.momentum) * var else: xc = x - self.running_mean xn = xc / ((np.sqrt(self.running_var + 10e-7))) out = self.gamma * xn + self.beta return out def backward(self, dout): if dout.ndim != 2: N, C, H, W = dout.shape dout = dout.reshape(N, -1) dx = self.__backward(dout) dx = dx.reshape(*self.input_shape) return dx def __backward(self, dout): dbeta = dout.sum(axis=0) dgamma = np.sum(self.xn * dout, axis=0) dxn = self.gamma * dout dxc = dxn / self.std dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0) dvar = 0.5 * dstd / self.std dxc += (2.0 / self.batch_size) * self.xc * dvar dmu = np.sum(dxc, axis=0) dx = dxc - dmu / self.batch_size self.dgamma = dgamma self.dbeta = dbeta return dx class Convolution: def __init__(self, W, b, stride=1, pad=0): self.W = W self.b = b self.stride = stride self.pad = pad # 中间数据(backward时使用) self.x = None self.col = None self.col_W = None # 权重和偏置参数的梯度 self.dW = None self.db = None def forward(self, x): FN, C, FH, FW = self.W.shape N, C, H, W = x.shape out_h = 1 + int((H + 2*self.pad - FH) / self.stride) out_w = 1 + int((W + 2*self.pad - FW) / self.stride) col = im2col(x, FH, FW, self.stride, self.pad) col_W = self.W.reshape(FN, -1).T out = np.dot(col, col_W) + self.b out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2) self.x = x self.col = col self.col_W = col_W return out def backward(self, dout): FN, C, FH, FW = self.W.shape dout = dout.transpose(0,2,3,1).reshape(-1, FN) self.db = np.sum(dout, axis=0) self.dW = np.dot(self.col.T, dout) self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW) dcol = np.dot(dout, self.col_W.T) dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad) return dx class Pooling: def __init__(self, pool_h, pool_w, stride=1, pad=0): self.pool_h = pool_h self.pool_w = pool_w self.stride = stride self.pad = pad self.x = None self.arg_max = None def forward(self, x): N, C, H, W = x.shape out_h = int(1 + (H - self.pool_h) / self.stride) out_w = int(1 + (W - self.pool_w) / self.stride) col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad) col = col.reshape(-1, self.pool_h*self.pool_w) arg_max = np.argmax(col, axis=1) out = np.max(col, axis=1) out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2) self.x = x self.arg_max = arg_max return out def backward(self, dout): dout = dout.transpose(0, 2, 3, 1) pool_size = self.pool_h * self.pool_w dmax = np.zeros((dout.size, pool_size)) dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten() dmax = dmax.reshape(dout.shape + (pool_size,)) dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1) dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad) return dx