【HNOI2017】礼物

题面

题解

显然两个手环只需要一个的亮度增加\(c \in [-m, m]\)和原题是等价的。

于是可以写成这样一个公式:

\[\sum_{i = 1} ^ n(x_i - y_{i+k} + c) ^ 2
\]

于是最后只有\(-2\sum_{i=1}^n x_iy_{i+k}\)不是常数项(假设\(c\)是常数)

于是现在问题变成了求\(\sum_{i=1}^nx_iy_{i+k}\)的最大值。

这个时候就需要用到一些套路。

我们将序列\(y\)反过来然后在后面接一遍,变成多项式卷积。

然后我们可以看出\(\sum x_iy_{i+k}\)就是\(x^{n+k-1}\)的系数,

然后\(\because m \leq 100\),暴力枚举\(c\)即可。

代码

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define RG register
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std; inline int read()
{
int data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
} const int maxn(2000010);
const double pi(acos(-1));
int d[maxn];
int s[maxn], ans=2147483647, cnt;
int n, m, r[maxn], N, M, c[maxn];
complex<double> a[maxn], b[maxn]; template<int opt>
inline void FFT(complex<double> *p)
{
for(RG int i=0;i<N;i++) if(i<r[i]) swap(p[i], p[r[i]]);
for(RG int i=1;i<=N;i<<=1)
{
RG complex<double> rot(cos(pi/i), opt*sin(pi/i));
for(RG int j=0;j<N;j+=(i<<1))
{
RG complex<double> w(1, 0);
for(RG int k=0;k<i;k++, w*=rot)
{
complex<double> x=p[j+k], y=w*p[j+k+i];
p[j+k]=x+y; p[j+k+i]=x-y;
}
}
}
} inline void init()
{
M=n+(N=n-1);
for(RG int i=1;i<=n;i++) a[i-1]=d[i];
for(RG int i=0;i<n;i++) b[i]=b[i+n]=c[n-i];
M+=N; for(N=1;N<=M;N<<=1) ++cnt;
for(RG int i=0;i<N;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(cnt-1));
FFT<1>(a); FFT<1>(b); for(RG int i=0;i<N;i++) a[i]*=b[i];
FFT<-1>(a);
for(RG int i=0;i<=M;i++) s[i]=(int)(a[i].real()/N+0.5);
} int main()
{
n=read(); m=read();
for(RG int i=1;i<=n;i++) d[i]=read();
for(RG int i=1;i<=n;i++) c[i]=read();
init();
int o=0, p=0, q=0, r=0, maxs=-ans;
for(RG int i=1;i<=n;i++) o+=d[i]*d[i], p+=c[i]*c[i], q+=d[i], r+=c[i];
for(RG int i=n-1;i<(n<<1);i++) maxs=max(maxs, s[i]);
for(RG int C=-m;C<=m;C++)
{
int res=o+p+C*C*n+2*C*(q-r)-(maxs << 1);
ans=min(res, ans);
}
printf("%d\n", ans);
return 0;
}
上一篇:[Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族


下一篇:【Win 10 应用开发】导入.pfx证书