3.什么是CPU上下文切换01?

1.前言:

  cpu的上下文切换一般多出现在多个进程竞争cpu的情景

2.CPU的上下文切换:

  2.1介绍

  进程在竞争 CPU 的时候并没有真正运行,为什么还会导致系统的负载升高呢?   答案在于:CPU 上下文切换就是罪魁祸首。

  Linux 是一个多任务操作系统,它支持远大于 CPU 数量的任务(通常所说的后台进程)同时运行,但是,这并不意味这这些任务会在同一时刻就一起运行,而是系统会在很短的时间内将cpu轮流地分配给它们就行使用。造成多任务同时运行的错觉。

  这里在运行每个运行任务前,cpu需要知道任务需要从哪里加载,又从哪里开始运行,也就是说需要系统事先先帮他设置好cpu的寄存器和程序计数器(Program Counter)

  cpu寄存器,是cpu内置的容量小、但是速度极快的内存。而程序计数器,则是用来存储cpu正在执行的指令位置,或者即将执行的下一条指令的位置,它们都是cpu在运行任何任务前,必须的依赖环境,因此也被叫做cpu上下文

  3.什么是CPU上下文切换01?

  因此,我们可以这样理解CPU上文切换,cpu上下文切换,就是先把一个任务的CPU上下文(也就是cpu的寄存器和程序计数器)保存起来,然后加载新任务的上下文到这个寄存器和程序计数器

,最后再跳转到程序计数器所指的新位置,运行新任务。

  而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载起来。这样就能保证任务原来的状态不受影响,让任务看起来哈市连续运行。

  这样看起来cpu上下文切换就是更新cpu寄存器的值,本身是为了快速运行任务而设计的,但是为什么会影响cpu的性能呢?

  这是因为任务除了有进程和线程外,还有一种硬件通过触发信号,导致中断处理程序的调用,这也是一种常见的任务。

  所以,根据任务的不同,CPU的上下文切换就可以分为几种不同的场景,也就是进程上下文切换线程上下文切换、以及中断上下文切换

  2.2进程上下文切换

  Linux按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中,cpu特权等级的Ring 0 和Ring 3.

  • 内核空间(Ring 0)具有最高权限,可以直接访问所有资源
  • 用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统条用陷入到内核中,才能访问这些特权资源。

3.什么是CPU上下文切换01?  

  也就说进程既可以在用户空间运行,也可以在内核空间中运行,进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。

  从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用open()打开文件,然后调用read()读取文件内容,并调用write()将内容写到标准输出,最后再调用close()关闭文件。

  那么,系统调用的过程有没有发生cpu上下文的切换呢?--->答案自然是有的

  cpu寄存器里原来用户态的指令位置,需要先保存起来,接着,为了执行内核态代码,cpu寄存器需要更新为内核态指令的新位置,最后才是跳转到内核态运行内核任务。

  而系统调用结束后,cpu寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以,一次系统调用的过程,其实是发生了两次cpu上下文切换

  不过,需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:

  • 进程上下文切换,是指从一个进程切换到另外一个进程运行。
  • 而系统调用的过程中一直是同一个进程在运行。  

  所以,系统调用过程通常称为特权模式切换,而不是上下文切换。但实际上,系统调用过程中,cpu的上下文切换还是无法避免的。

  那么,进程上下文切换系统调用有什么区别呢?

  首先,你需要知道,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括内核栈、寄存器等内核空间的状态。

  因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和cpu寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

  如下图所示,保存上下文和恢复上下文的过程并不是’免费‘的,需要内核在cpu上运行才能完成。

 3.什么是CPU上下文切换01?

  根据TSuna的测试报告,每次上下文切换都需要几十纳秒到数微妙的cpu时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致cpu将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是上一节中我们所讲的,导致平均负载升高的一个重要因素。

  这里我们知道了进程上下文切换潜在的性能问题后,我们再来看看,究竟什么时候会切换进程上下文。

  显然,进程切换时才需要切换上下文,换句话说,只有在进程调度的时候,才需要切换上下文,Linux为每个cpu都维护了一个就绪队列,将活跃进程(即正在运行和正在等待cpu的进程)按照优先级和等待cpu的时间排序,然后选择最需要cpu的进程,也就是优先级最高和等待cpu时间最长的进程来运行。

  那么,进程在什么时候才会被调度到cpu上运行呢?

  最容易想到的一个时机,就是进程执行完终止了,它之前使用的cpu会释放出来,这个时候再从就绪队列中,拿一个新的进程过来运行

  上下文切换情景:

  • 其一,为了保证所有进程可以得到公平调度,cpu时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待cpu的进程运行。
  • 其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其它进程运行。 
  • 其三,当进程通过睡眠函数sleep这样的方法将自己主动挂起时,自然也会重新调度。
  • 其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。
  • 其五。发生硬件中断时,cpu上的进程会被中断挂起,转而执行内核中的中断服务程序。 

  因此,了解这几个场景是非常有必要的,因为一旦出现上下文切换的性能问题,它们就是幕后凶手。

  2.3 线程上下文切换

  线程和进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位。说白了,所谓内核中的任务调度,实际上的调度对象是线程,而进程只是给线程提供了虚拟内存、全局变量等资源。所以,对于线程和进程,我们可以这么理解:

  • 当进程只有一个线程时,可以进程就等于线程
  • 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。
  • 另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

 这样一来,线程的上下文切换其实就可以分为两种情况:

  第一种,前后两个线程属于不同进程,此时,因为资源不共享,所以切换过程就跟进程上下文切换时一样

  第二种,前后两个线程属于同一个进程,此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这个资源就保持不动,只需要切换线程的私有数据、寄存器等不共享数据。

  因此,同为上下文切换,但是同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。    

  2.4 中断上下文切换

  除了前面两种上下文切换,还有一个场景也会切换cpu上下文,那就是中断。

  为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

  跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。

  对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

  另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

  

3.小结:

  总结一下,不管是哪种场景导致的上下文切换,你都应该知道:

  1. CPU 上下文切换,是保证 Linux 系统正常工作的核心功能之一,一般情况下不需要我们特别关注
  2. 但过多的上下文切换,会把 CPU 时间消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。

  

 

3.什么是CPU上下文切换01?

上一篇:lambba表达式


下一篇:Jhipster创建实体