题意 求迷宫中从a的位置到r的位置须要的最少时间 经过'.'方格须要1s 经过‘x’方格须要两秒 '#'表示墙
因为有1s和2s两种情况 须要在基础迷宫bfs上加些推断
令到达每一个点的时间初始为无穷大 当从一个点到达该点用的时间比他本来的时间小时 更新这个点的时间并将这个点入队 扫描全然图就得到答案咯
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std; const int N = 205;
char mat[N][N];
int time[N][N], sx, sy;
int dx[4] = {0, 0, -1, 1};
int dy[4] = { -1, 1, 0, 0};
struct grid
{
int x, y;
grid(int xx = 0, int yy = 0): x(xx), y(yy) {}
}; void bfs()
{
memset(time, 0x3f, sizeof(time));
time[sx][sy] = 0;
queue<grid> g;
g.push(grid(sx, sy)); while(!g.empty())
{
grid cur = g.front();
g.pop();
int cx = cur.x, cy = cur.y, ct = time[cx][cy];
for(int i = 0; i < 4; ++i)
{
int nx = cx + dx[i], ny = cy + dy[i];
if(mat[nx][ny] && mat[nx][ny] != '#')
{
int tt = ct + 1;
if(mat[cx][cy] == 'x') ++tt;
if(tt < time[nx][ny])
{
time[nx][ny] = tt;
g.push(grid(nx, ny));
}
}
}
}
} int main()
{
int n, m, ex, ey;
while (~scanf("%d%d", &n, &m))
{
memset(mat, 0, sizeof(mat));
for(int i = 1; i <= n; ++i)
scanf("%s", mat[i] + 1);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
if(mat[i][j] == 'a') sx = i, sy = j;
else if(mat[i][j] == 'r') ex = i, ey = j;
bfs();
if(time[ex][ey] != time[0][0])
printf("%d\n", time[ex][ey]);
else
printf("Poor ANGEL has to stay in the * all his life.\n");
} return 0;
}