基于深度置信网络(DBN) 识别手写数据集minnist代码(直接上手,直接运行可用,亲测,python3)

二话不说给代码:

  1 #urllib is used to download the utils file from deeplearning.net
  2 import urllib.request
  3 response = urllib.request.urlopen('http://deeplearning.net/tutorial/code/utils.py')
  4 content = response.read()
  5 target = open('utils.py', 'wb+')
  6 target.write(content)
  7 target.close()
  8 #Import the math function for calculations
  9 import math
 10 #Tensorflow library. Used to implement machine learning models
 11 import tensorflow as tf
 12 #Numpy contains helpful functions for efficient mathematical calculations
 13 import numpy as np
 14 #Image library for image manipulation
 15 from PIL import Image
 16 #import Image
 17 #Utils file
 18 
 19 #导入MNIST数据
 20 
 21 #Getting the MNIST data provided by Tensorflow
 22 old_v = tf.compat.v1.logging.get_verbosity()
 23 tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
 24 from tensorflow.examples.tutorials.mnist import input_data
 25 
 26 #Loading in the mnist data
 27 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 28 tf.compat.v1.logging.set_verbosity(old_v)
 29 trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
 30     mnist.test.labels
 31 
 32 
 33 
 34 
 35 #构建RBM层
 36 
 37 #Class that defines the behavior of the RBM
 38 class RBM(object):
 39 
 40     def __init__(self, input_size, output_size):
 41         #Defining the hyperparameters
 42         self._input_size = input_size #Size of input
 43         self._output_size = output_size #Size of output
 44         self.epochs = 5 #Amount of training iterations
 45         self.learning_rate = 1.0 #The step used in gradient descent
 46         self.batchsize = 100 #The size of how much data will be used for training per sub iteration
 47 
 48         #Initializing weights and biases as matrices full of zeroes
 49         self.w = np.zeros([input_size, output_size], np.float32) #Creates and initializes the weights with 0
 50         self.hb = np.zeros([output_size], np.float32) #Creates and initializes the hidden biases with 0
 51         self.vb = np.zeros([input_size], np.float32) #Creates and initializes the visible biases with 0
 52 
 53 
 54     #Fits the result from the weighted visible layer plus the bias into a sigmoid curve
 55     def prob_h_given_v(self, visible, w, hb):
 56         #Sigmoid
 57         return tf.nn.sigmoid(tf.matmul(visible, w) + hb)
 58 
 59     #Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
 60     def prob_v_given_h(self, hidden, w, vb):
 61         return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)
 62 
 63     #Generate the sample probability
 64     def sample_prob(self, probs):
 65         return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))
 66 
 67     #Training method for the model
 68     def train(self, X):
 69         #Create the placeholders for our parameters
 70         _w = tf.placeholder("float", [self._input_size, self._output_size])
 71         _hb = tf.placeholder("float", [self._output_size])
 72         _vb = tf.placeholder("float", [self._input_size])
 73 
 74         prv_w = np.zeros([self._input_size, self._output_size], np.float32) #Creates and initializes the weights with 0
 75         prv_hb = np.zeros([self._output_size], np.float32) #Creates and initializes the hidden biases with 0
 76         prv_vb = np.zeros([self._input_size], np.float32) #Creates and initializes the visible biases with 0
 77 
 78 
 79         cur_w = np.zeros([self._input_size, self._output_size], np.float32)
 80         cur_hb = np.zeros([self._output_size], np.float32)
 81         cur_vb = np.zeros([self._input_size], np.float32)
 82         v0 = tf.placeholder("float", [None, self._input_size])
 83 
 84         #Initialize with sample probabilities
 85         h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
 86         v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
 87         h1 = self.prob_h_given_v(v1, _w, _hb)
 88 
 89         #Create the Gradients
 90         positive_grad = tf.matmul(tf.transpose(v0), h0)
 91         negative_grad = tf.matmul(tf.transpose(v1), h1)
 92 
 93         #Update learning rates for the layers
 94         update_w = _w + self.learning_rate *(positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
 95         update_vb = _vb +  self.learning_rate * tf.reduce_mean(v0 - v1, 0)
 96         update_hb = _hb +  self.learning_rate * tf.reduce_mean(h0 - h1, 0)
 97 
 98         #Find the error rate
 99         err = tf.reduce_mean(tf.square(v0 - v1))
100 
101         #Training loop
102         with tf.Session() as sess:
103             sess.run(tf.initialize_all_variables())
104             #For each epoch
105             for epoch in range(self.epochs):
106                 #For each step/batch
107                 for start, end in zip(range(0, len(X), self.batchsize),range(self.batchsize,len(X), self.batchsize)):
108                     batch = X[start:end]
109                     #Update the rates
110                     cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
111                     cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
112                     cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
113                     prv_w = cur_w
114                     prv_hb = cur_hb
115                     prv_vb = cur_vb
116                 error=sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
117                 print('Epoch: %d' % epoch,'reconstruction error: %f' % error)
118             self.w = prv_w
119             self.hb = prv_hb
120             self.vb = prv_vb
121 
122     #Create expected output for our DBN
123     def rbm_outpt(self, X):
124         input_X = tf.constant(X)
125         _w = tf.constant(self.w)
126         _hb = tf.constant(self.hb)
127         out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
128         with tf.Session() as sess:
129             sess.run(tf.global_variables_initializer())
130             return sess.run(out)
131 
132 #建立DBN
133 
134 RBM_hidden_sizes = [500, 200 , 50 ] #create 2 layers of RBM with size 400 and 100
135 
136 #Since we are training, set input as training data
137 inpX = trX
138 
139 #Create list to hold our RBMs
140 rbm_list = []
141 
142 #Size of inputs is the number of inputs in the training set
143 input_size = inpX.shape[1]
144 
145 #For each RBM we want to generate
146 for i, size in enumerate(RBM_hidden_sizes):
147     print('RBM: ',i,' ',input_size,'->', size)
148     rbm_list.append(RBM(input_size, size))
149     input_size = size
150 
151 
152 
153 
154 #神经网络
155 
156 class NN(object):
157 
158     def __init__(self, sizes, X, Y):
159         #Initialize hyperparameters
160         self._sizes = sizes
161         self._X = X
162         self._Y = Y
163         self.w_list = []
164         self.b_list = []
165         self._learning_rate =  1.0
166         self._momentum = 0.0
167         self._epoches = 10
168         self._batchsize = 100
169         input_size = X.shape[1]
170 
171         #initialization loop
172         for size in self._sizes + [Y.shape[1]]:
173             #Define upper limit for the uniform distribution range
174             max_range = 4 * math.sqrt(6. / (input_size + size))
175 
176             #Initialize weights through a random uniform distribution
177             self.w_list.append(
178                 np.random.uniform( -max_range, max_range, [input_size, size]).astype(np.float32))
179 
180             #Initialize bias as zeroes
181             self.b_list.append(np.zeros([size], np.float32))
182             input_size = size
183 
184     #load data from rbm
185     def load_from_rbms(self, dbn_sizes,rbm_list):
186         #Check if expected sizes are correct
187         assert len(dbn_sizes) == len(self._sizes)
188 
189         for i in range(len(self._sizes)):
190             #Check if for each RBN the expected sizes are correct
191             assert dbn_sizes[i] == self._sizes[i]
192 
193         #If everything is correct, bring over the weights and biases
194         for i in range(len(self._sizes)):
195             self.w_list[i] = rbm_list[i].w
196             self.b_list[i] = rbm_list[i].hb
197 
198     #Training method
199     def train(self):
200         #Create placeholders for input, weights, biases, output
201         _a = [None] * (len(self._sizes) + 2)
202         _w = [None] * (len(self._sizes) + 1)
203         _b = [None] * (len(self._sizes) + 1)
204         _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
205         y = tf.placeholder("float", [None, self._Y.shape[1]])
206 
207         #Define variables and activation functoin
208         for i in range(len(self._sizes) + 1):
209             _w[i] = tf.Variable(self.w_list[i])
210             _b[i] = tf.Variable(self.b_list[i])
211         for i in range(1, len(self._sizes) + 2):
212             _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])
213 
214         #Define the cost function
215         cost = tf.reduce_mean(tf.square(_a[-1] - y))
216 
217         #Define the training operation (Momentum Optimizer minimizing the Cost function)
218         train_op = tf.train.MomentumOptimizer(
219             self._learning_rate, self._momentum).minimize(cost)
220 
221         #Prediction operation
222         predict_op = tf.argmax(_a[-1], 1)
223 
224         #Training Loop
225         with tf.Session() as sess:
226             #Initialize Variables
227             sess.run(tf.global_variables_initializer())
228 
229             #For each epoch
230             for i in range(self._epoches):
231 
232                 #For each step
233                 for start, end in zip(
234                     range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
235 
236                     #Run the training operation on the input data
237                     sess.run(train_op, feed_dict={
238                         _a[0]: self._X[start:end], y: self._Y[start:end]})
239                 for j in range(len(self._sizes) + 1):
240                     #Retrieve weights and biases
241                     self.w_list[j] = sess.run(_w[j])
242                     self.b_list[j] = sess.run(_b[j])
243 
244                 print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) ==
245                               sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))
246 
247 
248 if __name__ =='__main__':
249     ##训练数据集
250     # For each RBM in our list
251     for rbm in rbm_list:
252         print('New RBM:')
253         # Train a new one
254         rbm.train(inpX)
255         # Return the output layer
256         inpX = rbm.rbm_outpt(inpX)
257 
258     print("正在训练。。。。。。")
259     nNet = NN(RBM_hidden_sizes, trX, trY)
260     nNet.load_from_rbms(RBM_hidden_sizes, rbm_list)
261     nNet.train()

 

上一篇:干货 | 对象存储的跨地域复制概述


下一篇:Docker私有仓库搭建笔记(六)