BZOJ 1041: [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3621  Solved: 1605
[Submit][Status][Discuss]

Description

  求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

  只有一个正整数n,n<=2000 000 000

Output

  整点个数

Sample Input

4

Sample Output

4

HINT

 

Source

 

[Submit][Status][Discuss]

一道几何数学好题。

根据圆的方程,$X^{2}+Y^{2}=R^{2}$

可以变形得到,$Y^{2}=R^{2}-X^{2}$

根据平方差公式,$Y^{2}=(R+X)*(R-X)$

左右取算数平方根,$Y= \sqrt{(R+X)*(R-X)}$

设$d=gcd(R+X,R-X)$,即$d$为$R+X$和$R-X$的最大公约数

设$A=\frac{R-X}{d}$,$B=\frac{R+X}{d}$,那么显然有$A$和$B$互质

那么$Y=d*\sqrt{A}*\sqrt{B}$,为了让$Y$为整数,显然需要$\sqrt{A}$和$\sqrt{B}$为整数

设$a=\sqrt{A}$,$b=\sqrt{B}$,有$a$和$b$不等且互质,$a \lt b$

$A+B=a^{2}+b^{2}=\frac{R+X}{d}+\frac{R-X}{d}=\frac{2R}{d}$

那么$d$需要是$2R$的约数,这个可以$\sqrt{2R}$的枚举

对于一个$d$,再枚举$a$,注意$2a^{2} \lt a^{2}+b^{2}=\frac{2R}{d}$

所以$a$只需要在$\sqrt{\frac{R}{d}}$的范围内枚举

注意最后加上坐标轴上的4个整点

 #include <bits/stdc++.h>

 typedef long long lnt;

 using namespace std;

 lnt gcd(lnt a, lnt b)
{
return b ? gcd(b, a % b) : a;
} signed main(void)
{
lnt R, ans = ; scanf("%lld", &R); for (lnt d = ; d*d <= (R << ); ++d)
if ((R << ) % d == )
{
for (lnt a = ; a*a <= R/d; ++a)
{
double b = sqrt((*R) / d - a*a);
lnt bb = floor(b);
if (b != bb)
continue;
if (gcd(a, bb) != )
continue;
if (a != b)
++ans;
} if (d*d != *R)
for (lnt a = ; a*a <= d/; ++a)
{
double b = sqrt(d - a*a);
lnt bb = floor(b);
if (b != bb)
continue;
if (gcd(a, bb) != )
continue;
if (a != b)
++ans;
}
} printf("%lld\n", ans* + );
}

@Author: YouSiki

上一篇:linux 安装python


下一篇:VirtualBox安装Ubuntu教程