做法
先来填第一个数,为了保证\(f(p)\)最大,第一个数分解一下为\(\prod\limits_{p_i}p_i^{k_i}\)使得\(\sum\limits_{k_i}\)最大
显然第一个数为\(2^x3^y\)且\(y≤1\),否则可以把\(3^2\)换成\(2^3\),故第一个数最多有两种选择
定义函数\(Cout(x,y)=\frac{n}{2^x3^y}\)为n以内含因子\(2^x3^y\)的个数
设\(f_{i,x,y}\)为填到第\(i\)个数后\(gcd_{j=1}^i a_i=2^x3^y\)的方案数,显然最后的答案为\(f_{n,0,0}\)
code
#include<bits/stdc++.h>
using namespace std;
typedef int LL;
const LL maxn=1e6+9,mod=1e9+7;
LL n;
LL f[maxn][21][2];
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=ret*base; base=base*base; b>>=1;
}return ret;
}
inline LL Cout(LL x,LL y){
LL val(1<<x);
val*=(y?3:1);
return n/val;
}
int main(){
scanf("%d",&n);
LL p(0);
while((1<<p)<=n) ++p;
f[1][--p][0]=1;
if((1<<p-1)*3<=n) f[1][p-1][1]=1;
for(LL i=1;i<n;++i)
for(LL j=0;j<=p;++j){
for(LL k=0;k<=1;++k){
f[i+1][j][k]=(f[i+1][j][k]+1ll*f[i][j][k]*(Cout(j,k)-i))%mod;
if(j) f[i+1][j-1][k]=(f[i+1][j-1][k]+1ll*f[i][j][k]*(Cout(j-1,k)-Cout(j,k)))%mod;
if(k) f[i+1][j][k-1]=(f[i+1][j][k-1]+1ll*f[i][j][k]*(Cout(j,k-1)-Cout(j,k)))%mod;
}
}
printf("%d",f[n][0][0]);
return 0;
}