[51nod1357]密码锁

  有一个密码锁,其有N位,每一位可以是一个0~9的数字,开启密码锁需要将锁上每一位数字转到解锁密码一致。这个类似你旅行用的行李箱上的密码锁,密码锁的每一位其实是一个圆形转盘,上面依次标了0,1,...9,对每一位来说可以正向或者逆向拨动,正向拨动时原有数字x会变成新的数字(x+1 mod 10),例如1->2,2->3,9->0;同理逆向拨动变为(x-1 mod 10)即9->8,5->4,0->9。定义对密码锁的一次操作:选择一个连续的区间[L,R],可以只包含一位即L==R,将这个区间的所有数字正向拨动或逆向拨动一次,注意要么全部正着拨,要么全逆着。例如:12397正向后变成23408,逆向后变成01286。给出密码锁初始和解锁需要的终止状态,问最少多少次操作能解锁。
 Input
  多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
  每组测试数据有相同的结构构成:
  每组数据有两行构成,第一行是密码锁的初始状态S,第二行是解锁的终止状态E,其中1<=len(S)=len(E)<=2500,且都由0~9构成
 Output
  每组数据一行输出,即最少需要的操作数。

简化分析,先对每一位重映射,目标转化为第i位需要正转L次变成目标位。简单的说就是把目标串变成'0000....000000000'。
第二次转化,因为目标是把所有的位置0,所以我们定义NewBit[i] = (Bit[i]-Bit[i-1]) mod 10;NewBit[0]=Bit[0]
Bit[]={0,0,0,.....,0}等价NewBit[]={0,0,.........,0},两个问题等价

对Bit[]的[L,R]区间整体位移,等价为对NewBit[]中NewBit[L]与NewBit[R]两个量操作,一个+1,一个-1.其中R=N-1时,没有R+1这项,只有NewBit[L]自己动。一次影响两个项,很容易想到贪心,每个NewBit[]只网一个方向变,即将一些项往正方向转,一些往负方向转,他们两类可以配对,若正的比负的多,用多出来的与R=N配对即可。

在NewBit[]中做一个简单N^2dp背包即可以求解。

具体DP的话就是f[i][j]表示处理完前i个数,正转操作的数量为j时,负方向最少要转多少次。

看了别人的AC代码其实也可以不用DP的样子...每次拿 需要正转次数最多 和需要负转次数最多的去强行配对似乎就行了?

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstdlib>
#define ll long long
#define ull unsigned long long
#define ui unsigned int
#define d double
#define ld long double
const int maxn=,modd=; int a[maxn],add[maxn],dec[maxn],pr[maxn],aft[maxn],f[maxn*];
int i,j,k,n,m;
char s[maxn],t[maxn]; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while(rx<''&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>='')ra=ra*+rx-,rx=getchar();return ra*fh;
} inline int min(int a,int b){return a<b?a:b;}
inline int max(int a,int b){return a>b?a:b;}
inline void mins(int &a,int b){if(b<a)a=b;}
inline int MOD(int x){return x<?x+:x>?x-:x;}
int main(){
for(int T=read();T;T--){
scanf("%s%s",s+,t+);n=strlen(s+);int tmp;
for(i=;i<=n;i++)a[i]=MOD(t[i]-s[i]),add[i]=MOD(a[i]-a[i-]),dec[i]=-add[i],pr[i]=pr[i-]+add[i];
for(i=n,aft[n+]=;i;i--)aft[i]=aft[i+]+dec[i]; // for(i=1;i<=n;i++)printf(" %d",a[i]);puts(""); memset(f,,(pr[n]+)<<);
f[]=;
for(i=;i<=n;i++)if(add[i]){
tmp=dec[i];
for(j=pr[i],k=j-add[i];k>=;j--,k--)
mins(f[j]+=tmp,f[k]);
while(j>=)f[j--]+=tmp;
}
int ans=1e9;
for(i=;i<=pr[n]&&i<ans;i++)mins(ans,max(i,f[i]));
printf("%d\n",ans);
}
}

2018.4 UPD: 达成成就:2016年(嘴巴上)A掉GDOI2018的题目。

上一篇:SQLBackupAndFTP The server principal "NT AUTHORITY\SYSTEM" is not able to access the database "xxxx"


下一篇:TCP/IP详解学习笔记(11)-- TFTP:简单文本传输协议,BOOTP:引导程序协议