题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405
题目大意:飞行棋。如果格子不是飞行点,扔骰子前进。否则直接飞到目标点。每个格子是唯一的飞行起点,但不是唯一的飞行终点。问到达或越过终点的扔骰子期望数。
解题思路:
一个告诉你求期望应该逆推而不是正推的题。
如果正推的话,对于一个点i,如果是飞行终点,那么势必要枚举到达它的飞行起点,起点有多个,每个起点概率不一定相等,期望怎么求?
如果逆推(终点变成起点)的话,对于一个点i,如果是飞行起点,那么枚举飞行终点时,可以确保终点只会出现一次,(点被逆转过来了)
即dp[v]=dp[i] (v是i的终点),即v点不用扔骰子,期望等于i点的期望,最重要的是v只会出现一次。
由于只要是飞行点或是起点(起点期望=0)就不用扔骰子,所以枚举v点时,要提前标记一下,这样推到这个点就不用扔骰子了。
如果是普通点,则枚举加上i+1~i+6这6个等概率的点的期望/6,再扔一次骰子期望+1。
最后ans=dp[0]。
#include "cstdio"
#include "vector"
#include "cstring"
using namespace std;
vector<int> air[];
double dp[];
bool vis[];
int main()
{
//freopen("in.txt","r",stdin);
int n,m,u,v;
while(scanf("%d%d",&n,&m)!=EOF&&n)
{
memset(dp,,sizeof(dp));
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++) air[i].clear();
for(int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
air[v].push_back(u);
}
for(int i=n;i>=;i--)
{
if(!vis[i]&&i!=n)
{
for(int j=i+;j<=i+;j++) dp[i]+=dp[j]/;
dp[i]+=;
}
for(int j=;j<air[i].size();j++)
{
int to=air[i][j];
dp[to]=dp[i];
vis[to]=true;
}
}
printf("%.4lf\n",dp[]);
}
}
12186624 | 2014-11-14 21:25:00 | Accepted | 4405 | 15MS | 2720K | 920 B | C++ | Physcal |