Java多线程系列--“JUC锁”07之 LockSupport

概述

本章介绍JUC(java.util.concurrent)包中的LockSupport。内容包括:
LockSupport介绍
LockSupport函数列表
LockSupport参考代码(基于JDK1.7.0_40)
LockSupport示例

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3505784.html

LockSupport介绍

LockSupport是用来创建锁和其他同步类的基本线程阻塞原语。
LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程,而且park()和unpark()不会遇到“Thread.suspend 和 Thread.resume所可能引发的死锁”问题。
因为park() 和 unpark()有许可的存在;调用 park() 的线程和另一个试图将其 unpark() 的线程之间的竞争将保持活性。

LockSupport函数列表

// 返回提供给最近一次尚未解除阻塞的 park 方法调用的 blocker 对象,如果该调用不受阻塞,则返回 null。
static Object getBlocker(Thread t)
// 为了线程调度,禁用当前线程,除非许可可用。
static void park()
// 为了线程调度,在许可可用之前禁用当前线程。
static void park(Object blocker)
// 为了线程调度禁用当前线程,最多等待指定的等待时间,除非许可可用。
static void parkNanos(long nanos)
// 为了线程调度,在许可可用前禁用当前线程,并最多等待指定的等待时间。
static void parkNanos(Object blocker, long nanos)
// 为了线程调度,在指定的时限前禁用当前线程,除非许可可用。
static void parkUntil(long deadline)
// 为了线程调度,在指定的时限前禁用当前线程,除非许可可用。
static void parkUntil(Object blocker, long deadline)
// 如果给定线程的许可尚不可用,则使其可用。
static void unpark(Thread thread)

LockSupport参考代码(基于JDK1.7.0_40)

LockSupport.java的源码如下:

 /*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent.locks;
import java.util.concurrent.*;
import sun.misc.Unsafe; /**
* Basic thread blocking primitives for creating locks and other
* synchronization classes.
*
* <p>This class associates, with each thread that uses it, a permit
* (in the sense of the {@link java.util.concurrent.Semaphore
* Semaphore} class). A call to {@code park} will return immediately
* if the permit is available, consuming it in the process; otherwise
* it <em>may</em> block. A call to {@code unpark} makes the permit
* available, if it was not already available. (Unlike with Semaphores
* though, permits do not accumulate. There is at most one.)
*
* <p>Methods {@code park} and {@code unpark} provide efficient
* means of blocking and unblocking threads that do not encounter the
* problems that cause the deprecated methods {@code Thread.suspend}
* and {@code Thread.resume} to be unusable for such purposes: Races
* between one thread invoking {@code park} and another thread trying
* to {@code unpark} it will preserve liveness, due to the
* permit. Additionally, {@code park} will return if the caller's
* thread was interrupted, and timeout versions are supported. The
* {@code park} method may also return at any other time, for "no
* reason", so in general must be invoked within a loop that rechecks
* conditions upon return. In this sense {@code park} serves as an
* optimization of a "busy wait" that does not waste as much time
* spinning, but must be paired with an {@code unpark} to be
* effective.
*
* <p>The three forms of {@code park} each also support a
* {@code blocker} object parameter. This object is recorded while
* the thread is blocked to permit monitoring and diagnostic tools to
* identify the reasons that threads are blocked. (Such tools may
* access blockers using method {@link #getBlocker}.) The use of these
* forms rather than the original forms without this parameter is
* strongly encouraged. The normal argument to supply as a
* {@code blocker} within a lock implementation is {@code this}.
*
* <p>These methods are designed to be used as tools for creating
* higher-level synchronization utilities, and are not in themselves
* useful for most concurrency control applications. The {@code park}
* method is designed for use only in constructions of the form:
* <pre>while (!canProceed()) { ... LockSupport.park(this); }</pre>
* where neither {@code canProceed} nor any other actions prior to the
* call to {@code park} entail locking or blocking. Because only one
* permit is associated with each thread, any intermediary uses of
* {@code park} could interfere with its intended effects.
*
* <p><b>Sample Usage.</b> Here is a sketch of a first-in-first-out
* non-reentrant lock class:
* <pre>{@code
* class FIFOMutex {
* private final AtomicBoolean locked = new AtomicBoolean(false);
* private final Queue<Thread> waiters
* = new ConcurrentLinkedQueue<Thread>();
*
* public void lock() {
* boolean wasInterrupted = false;
* Thread current = Thread.currentThread();
* waiters.add(current);
*
* // Block while not first in queue or cannot acquire lock
* while (waiters.peek() != current ||
* !locked.compareAndSet(false, true)) {
* LockSupport.park(this);
* if (Thread.interrupted()) // ignore interrupts while waiting
* wasInterrupted = true;
* }
*
* waiters.remove();
* if (wasInterrupted) // reassert interrupt status on exit
* current.interrupt();
* }
*
* public void unlock() {
* locked.set(false);
* LockSupport.unpark(waiters.peek());
* }
* }}</pre>
*/ public class LockSupport {
private LockSupport() {} // Cannot be instantiated. // Hotspot implementation via intrinsics API
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long parkBlockerOffset; static {
try {
parkBlockerOffset = unsafe.objectFieldOffset
(java.lang.Thread.class.getDeclaredField("parkBlocker"));
} catch (Exception ex) { throw new Error(ex); }
} private static void setBlocker(Thread t, Object arg) {
// Even though volatile, hotspot doesn't need a write barrier here.
unsafe.putObject(t, parkBlockerOffset, arg);
} /**
* Makes available the permit for the given thread, if it
* was not already available. If the thread was blocked on
* {@code park} then it will unblock. Otherwise, its next call
* to {@code park} is guaranteed not to block. This operation
* is not guaranteed to have any effect at all if the given
* thread has not been started.
*
* @param thread the thread to unpark, or {@code null}, in which case
* this operation has no effect
*/
public static void unpark(Thread thread) {
if (thread != null)
unsafe.unpark(thread);
} /**
* Disables the current thread for thread scheduling purposes unless the
* permit is available.
*
* <p>If the permit is available then it is consumed and the call returns
* immediately; otherwise
* the current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of three things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread upon return.
*
* @param blocker the synchronization object responsible for this
* thread parking
* @since 1.6
*/
public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(false, 0L);
setBlocker(t, null);
} /**
* Disables the current thread for thread scheduling purposes, for up to
* the specified waiting time, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The specified waiting time elapses; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the elapsed time
* upon return.
*
* @param blocker the synchronization object responsible for this
* thread parking
* @param nanos the maximum number of nanoseconds to wait
* @since 1.6
*/
public static void parkNanos(Object blocker, long nanos) {
if (nanos > 0) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(false, nanos);
setBlocker(t, null);
}
} /**
* Disables the current thread for thread scheduling purposes, until
* the specified deadline, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread; or
*
* <li>The specified deadline passes; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the current time
* upon return.
*
* @param blocker the synchronization object responsible for this
* thread parking
* @param deadline the absolute time, in milliseconds from the Epoch,
* to wait until
* @since 1.6
*/
public static void parkUntil(Object blocker, long deadline) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(true, deadline);
setBlocker(t, null);
} /**
* Returns the blocker object supplied to the most recent
* invocation of a park method that has not yet unblocked, or null
* if not blocked. The value returned is just a momentary
* snapshot -- the thread may have since unblocked or blocked on a
* different blocker object.
*
* @param t the thread
* @return the blocker
* @throws NullPointerException if argument is null
* @since 1.6
*/
public static Object getBlocker(Thread t) {
if (t == null)
throw new NullPointerException();
return unsafe.getObjectVolatile(t, parkBlockerOffset);
} /**
* Disables the current thread for thread scheduling purposes unless the
* permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of three
* things happens:
*
* <ul>
*
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread upon return.
*/
public static void park() {
unsafe.park(false, 0L);
} /**
* Disables the current thread for thread scheduling purposes, for up to
* the specified waiting time, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The specified waiting time elapses; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the elapsed time
* upon return.
*
* @param nanos the maximum number of nanoseconds to wait
*/
public static void parkNanos(long nanos) {
if (nanos > 0)
unsafe.park(false, nanos);
} /**
* Disables the current thread for thread scheduling purposes, until
* the specified deadline, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The specified deadline passes; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the current time
* upon return.
*
* @param deadline the absolute time, in milliseconds from the Epoch,
* to wait until
*/
public static void parkUntil(long deadline) {
unsafe.park(true, deadline);
}
}

说明:LockSupport是通过调用Unsafe函数中的接口实现阻塞和解除阻塞的。

LockSupport示例

对比下面的“示例1”和“示例2”可以更清晰的了解LockSupport的用法。

示例1

 public class WaitTest1 {

     public static void main(String[] args) {

         ThreadA ta = new ThreadA("ta");

         synchronized(ta) { // 通过synchronized(ta)获取“对象ta的同步锁”
try {
System.out.println(Thread.currentThread().getName()+" start ta");
ta.start(); System.out.println(Thread.currentThread().getName()+" block");
// 主线程等待
ta.wait(); System.out.println(Thread.currentThread().getName()+" continue");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} static class ThreadA extends Thread{ public ThreadA(String name) {
super(name);
} public void run() {
synchronized (this) { // 通过synchronized(this)获取“当前对象的同步锁”
System.out.println(Thread.currentThread().getName()+" wakup others");
notify(); // 唤醒“当前对象上的等待线程”
}
}
}
}

示例2

 import java.util.concurrent.locks.LockSupport;

 public class LockSupportTest1 {

     private static Thread mainThread;

     public static void main(String[] args) {

         ThreadA ta = new ThreadA("ta");
// 获取主线程
mainThread = Thread.currentThread(); System.out.println(Thread.currentThread().getName()+" start ta");
ta.start(); System.out.println(Thread.currentThread().getName()+" block");
// 主线程阻塞
LockSupport.park(mainThread); System.out.println(Thread.currentThread().getName()+" continue");
} static class ThreadA extends Thread{ public ThreadA(String name) {
super(name);
} public void run() {
System.out.println(Thread.currentThread().getName()+" wakup others");
// 唤醒“主线程”
LockSupport.unpark(mainThread);
}
}
}

运行结果

main start ta
main block
ta wakup others
main continue

说明:park和wait的区别。wait让线程阻塞前,必须通过synchronized获取同步锁。


更多内容

1. Java多线程系列--“JUC锁”01之 框架

2. Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

3. Java多线程系列--“JUC锁”03之 公平锁(一)

4. Java多线程系列--“JUC锁”04之 公平锁(二)

5. Java多线程系列--“JUC锁”05之 非公平锁

6. Java多线程系列--“JUC锁”06之 Condition条件

7. Java多线程系列目录(共xx篇)

上一篇:ArcGIS Enterprise 10.5.1 静默安装部署记录(Centos 7.2 minimal)- 1、安装前准备


下一篇:dataset 修改小数点位数