Python性能提升小技巧

第一部分

1-使用内建函数:

你可以用Python写出高效的代码,但很难击败内建函数. 经查证. 他们非常快速

2-使用 join() 连接字符串.

你可以使用 + 来连接字符串. 但由于string在Python中是不可变的,每一个+操作都会创建一个新的字符串并复制旧内容. 常见用法是使用Python的数组模块单个的修改字符;当完成的时候,使用 join() 函数创建最终字符串.

>>> #This is good to glue a large number of strings
>>> for chunk in input():
>>> my_string.join(chunk)

3-使用Python多重赋值,交换变量

这在Python中即优雅又快速:

>>> x, y = y, x

这样很慢:

>>> temp = x
>>> x = y
>>> y = temp

4-尽量使用局部变量

Python 检索局部变量比检索全局变量快. 这意味着,避免 "global" 关键字.

5-尽量使用 in

使用 in 关键字. 简洁而快速.

>>> for key in sequence:
>>> print “found”

6-使用延迟加载加速

import 声明移入函数中,仅在需要的时候导入. 换句话说,如果某些模块不需马上使用,稍后导入他们. 例如,你不必在一开使就导入大量模块而加速程序启动. 该技术不能提高整体性能. 但它可以帮助你更均衡的分配模块的加载时间.(Tacey注这样就会将模块导入部分分散,不能一眼看出一个脚本导入了那些模块)

7-为无限循环使用 while 1

有时候在程序中你需一个无限循环.(例如一个监听套接字的实例) 尽管 while True 能完成同样的事, 但 while 1 是单步运算. 这招能提高你的Python性能.

>>> while 1:
>>> # do stuff, faster with while 1
>>> while True:
>>> # do stuff, slower with wile True

8-使用list comprehension(列表推导式)

从Python 2.0 开始,你可以使用 list comprehension 取代大量的 forwhile 块. 使用List comprehension通常更快,Python解析器能在循环中发现它是一个可预测的模式而被优化.额外好处是,list comprehension更具可读性(函数式编程),并在大多数情况下,它可以节省一个额外的计数变量。例如,让我们计算1到10之间的偶数个数:

>>> # the good way to iterate a range
>>> evens = [ i for i in range(10) if i%2 == 0]
>>> [0, 2, 4, 6, 8]
>>> # the following is not so Pythonic
>>> i = 0
>>> evens = []
>>> while i < 10:
>>> if i %2 == 0: evens.append(i)
>>> i += 1
>>> [0, 2, 4, 6, 8]

9-使用 xrange() 处理长序列:

这样可为你节省大量的系统内存,因为 xrange() 在序列中每次调用只产生一个整数元素。而相反 range() ,它將直接给你一个完整的元素列表,用于循环时会有不必要的开销。(Tacey注在Python3.x版本中range()xrange()没有区别)

10-使用 Python generator(生成器)

这也可以节省内存和提高性能。例如一个视频流,你可以一个一个字节块的发送,而不是整个流。例如,

>>> chunk = ( 1000 * i for i in xrange(1000))
>>> chunk
<generator object <genexpr> at 0x7f65d90dcaa0>
>>> chunk.next()
0
>>> chunk.next()
1000
>>> chunk.next()
2000

11-了解 itertools 模块:

该模块对迭代和组合是非常有效的。让我们生成一个列表 [1,2,3] 的所有排列组合,仅需三行Python代码:

>>> import itertools
>>> iter = itertools.permutations([1,2,3])
>>> list(iter)
[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

12-学习 bisect 模块保持列表排序:

这是一个免费的二分查找实现和快速插入有序序列的工具。也就是说,你可以使用:

>>> import bisect
>>> bisect.insort(list, element)

你已將一个元素插入列表中, 而你不需要再次调用 sort() 来保持容器的排序, 因为这在长序列中这会非常昂贵.

13-理解Python列表,实际上是一个数组

Python中的列表实现并不是以人们通常谈论的计算机科学中的普通单链表实现的。Python中的列表是一个数组。也就是说,你可以以常量时间 O(1) 检索列表的某个元素,而不需要从头开始搜索。这有什么意义呢? Python开发人员使用列表对象 insert() 时, 需三思、。例如:

>>> list.insert(0, item)

在列表的前面插入一个元素效率不高, 因为列表中的所有后续下标不得不改变. 然而,您可以使用 list.append() 在列表的尾端有效添加元素. 挑选 deque ,如果你想快速的在两端插入或删除。它是快速的,因为在Python中的 deque 用双链表实现。不再多说。

上一篇:zabbix磁盘的自动发现与磁盘指标监控


下一篇:基于Spring Boot/Spring Session/Redis的分布式Session共享解决方案