hadoop会对原始输入文件进行文件切割,然后把每个split传入mapper程序中进行处理,FileInputFormat是所有以文件作为数据源的InputFormat实现的基类,FileInputFormat保存作为job输入的所有文件,并实现了对输入文件计算splits的方法。至于获得记录的方法是有不同的子类进行实现的。
那么,FileInputFormat是怎样将他们划分成splits的呢?FileInputFormat只划分比HDFS block大的文件,所以如果一个文件的大小比block小,将不会被划分,这也是Hadoop处理大文件的效率要比处理很多小文件的效率高的原因。
hadoop默认的InputFormat是TextInputFormat,重写了FileInputFormat中的createRecordReader和isSplitable方法。该类使用的reader是LineRecordReader,即以回车键(CR = 13)或换行符(LF = 10)为行分隔符。
但大多数情况下,回车键或换行符作为输入文件的行分隔符并不能满足我们的需求,通常用户很有可能会输入回车键、换行符,所以通常我们会定义不可见字符(即用户无法输入的字符)为行分隔符,这种情况下,就需要新写一个InputFormat。
又或者,一条记录的分隔符不是字符,而是字符串,这种情况相对麻烦;还有一种情况,输入文件的主键key已经是排好序的了,需要hadoop做的只是把相同的key作为一个数据块进行逻辑处理,这种情况更麻烦,相当于免去了mapper的过程,直接进去reduce,那么InputFormat的逻辑就相对较为复杂了,但并不是不能实现。
1、改变一条记录的分隔符,不用默认的回车或换行符作为记录分隔符,甚至可以采用字符串作为记录分隔符。
1)自定义一个InputFormat,继承FileInputFormat,重写createRecordReader方法,如果不需要分片或者需要改变分片的方式,则重写isSplitable方法,具体代码如下:
public class FileInputFormatB extends FileInputFormat<LongWritable, Text> { @Override public RecordReader<LongWritable, Text> createRecordReader( InputSplit split, TaskAttemptContext context) { return new SearchRecordReader("\b"); } @Override protected boolean isSplitable(FileSystem fs, Path filename) { // 输入文件不分片 return false; } }
2)关键在于定义一个新的SearchRecordReader继承RecordReader,支持自定义的行分隔符,即一条记录的分隔符。标红的地方为与hadoop默认的LineRecordReader不同的地方。
public class IsearchRecordReader extends RecordReader<LongWritable, Text> { private static final Log LOG = LogFactory.getLog(IsearchRecordReader.class); private CompressionCodecFactory compressionCodecs = null; private long start; private long pos; private long end; private LineReader in; private int maxLineLength; private LongWritable key = null; private Text value = null; //行分隔符,即一条记录的分隔符 private byte[] separator = {'\b'}; private int sepLength = 1; public IsearchRecordReader(){ } public IsearchRecordReader(String seps){ this.separator = seps.getBytes(); sepLength = separator.length; } public void initialize(InputSplit genericSplit, TaskAttemptContext context) throws IOException { FileSplit split = (FileSplit) genericSplit; Configuration job = context.getConfiguration(); this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE); this.start = split.getStart(); this.end = (this.start + split.getLength()); Path file = split.getPath(); this.compressionCodecs = new CompressionCodecFactory(job); CompressionCodec codec = this.compressionCodecs.getCodec(file); // open the file and seek to the start of the split FileSystem fs = file.getFileSystem(job); FSDataInputStream fileIn = fs.open(split.getPath()); boolean skipFirstLine = false; if (codec != null) { this.in = new LineReader(codec.createInputStream(fileIn), job); this.end = Long.MAX_VALUE; } else { if (this.start != 0L) { skipFirstLine = true; this.start -= sepLength; fileIn.seek(this.start); } this.in = new LineReader(fileIn, job); } if (skipFirstLine) { // skip first line and re-establish "start". int newSize = in.readLine(new Text(), 0, (int) Math.min( (long) Integer.MAX_VALUE, end - start)); if(newSize > 0){ start += newSize; } } this.pos = this.start; } public boolean nextKeyValue() throws IOException { if (this.key == null) { this.key = new LongWritable(); } this.key.set(this.pos); if (this.value == null) { this.value = new Text(); } int newSize = 0; while (this.pos < this.end) { newSize = this.in.readLine(this.value, this.maxLineLength, Math.max( (int) Math.min(Integer.MAX_VALUE, this.end - this.pos), this.maxLineLength)); if (newSize == 0) { break; } this.pos += newSize; if (newSize < this.maxLineLength) { break; } LOG.info("Skipped line of size " + newSize + " at pos " + (this.pos - newSize)); } if (newSize == 0) { //读下一个buffer this.key = null; this.value = null; return false; } //读同一个buffer的下一个记录 return true; } public LongWritable getCurrentKey() { return this.key; } public Text getCurrentValue() { return this.value; } public float getProgress() { if (this.start == this.end) { return 0.0F; } return Math.min(1.0F, (float) (this.pos - this.start) / (float) (this.end - this.start)); } public synchronized void close() throws IOException { if (this.in != null) this.in.close(); } }
3)重写SearchRecordReader需要的LineReader,可作为SearchRecordReader内部类。特别需要注意的地方就是,读取文件的方式是按指定大小的buffer来读,必定就会遇到一条完整的记录被切成两半,甚至如果分隔符大于1个字符时分隔符也会被切成两半的情况,这种情况一定要加以拼接处理。
public class LineReader { //回车键(hadoop默认) //private static final byte CR = 13; //换行符(hadoop默认) //private static final byte LF = 10; //按buffer进行文件读取 private static final int DEFAULT_BUFFER_SIZE = 32 * 1024 * 1024; private int bufferSize = DEFAULT_BUFFER_SIZE; private InputStream in; private byte[] buffer; private int bufferLength = 0; private int bufferPosn = 0; LineReader(InputStream in, int bufferSize) { this.bufferLength = 0; this.bufferPosn = 0; this.in = in; this.bufferSize = bufferSize; this.buffer = new byte[this.bufferSize]; } public LineReader(InputStream in, Configuration conf) throws IOException { this(in, conf.getInt("io.file.buffer.size", DEFAULT_BUFFER_SIZE)); } public void close() throws IOException { in.close(); } public int readLine(Text str, int maxLineLength) throws IOException { return readLine(str, maxLineLength, Integer.MAX_VALUE); } public int readLine(Text str) throws IOException { return readLine(str, Integer.MAX_VALUE, Integer.MAX_VALUE); } //以下是需要改写的部分_start,核心代码 public int readLine(Text str, int maxLineLength, int maxBytesToConsume) throws IOException{ str.clear(); Text record = new Text(); int txtLength = 0; long bytesConsumed = 0L; boolean newline = false; int sepPosn = 0; do { //已经读到buffer的末尾了,读下一个buffer if (this.bufferPosn >= this.bufferLength) { bufferPosn = 0; bufferLength = in.read(buffer); //读到文件末尾了,则跳出,进行下一个文件的读取 if (bufferLength <= 0) { break; } } int startPosn = this.bufferPosn; for (; bufferPosn < bufferLength; bufferPosn ++) { //处理上一个buffer的尾巴被切成了两半的分隔符(如果分隔符中重复字符过多在这里会有问题) if(sepPosn > 0 && buffer[bufferPosn] != separator[sepPosn]){ sepPosn = 0; } //遇到行分隔符的第一个字符 if (buffer[bufferPosn] == separator[sepPosn]) { bufferPosn ++; int i = 0; //判断接下来的字符是否也是行分隔符中的字符 for(++ sepPosn; sepPosn < sepLength; i ++, sepPosn ++){ //buffer的最后刚好是分隔符,且分隔符被不幸地切成了两半 if(bufferPosn + i >= bufferLength){ bufferPosn += i - 1; break; } //一旦其中有一个字符不相同,就判定为不是分隔符 if(this.buffer[this.bufferPosn + i] != separator[sepPosn]){ sepPosn = 0; break; } } //的确遇到了行分隔符 if(sepPosn == sepLength){ bufferPosn += i; newline = true; sepPosn = 0; break; } } } int readLength = this.bufferPosn - startPosn; bytesConsumed += readLength; //行分隔符不放入块中 //int appendLength = readLength - newlineLength; if (readLength > maxLineLength - txtLength) { readLength = maxLineLength - txtLength; } if (readLength > 0) { record.append(this.buffer, startPosn, readLength); txtLength += readLength; //去掉记录的分隔符 if(newline){ str.set(record.getBytes(), 0, record.getLength() - sepLength); } } } while (!newline && (bytesConsumed < maxBytesToConsume)); if (bytesConsumed > (long)Integer.MAX_VALUE) { throw new IOException("Too many bytes before newline: " + bytesConsumed); } return (int) bytesConsumed; } //以下是需要改写的部分_end //以下是hadoop-core中LineReader的源码_start public int readLine(Text str, int maxLineLength, int maxBytesToConsume) throws IOException{ str.clear(); int txtLength = 0; int newlineLength = 0; boolean prevCharCR = false; long bytesConsumed = 0L; do { int startPosn = this.bufferPosn; if (this.bufferPosn >= this.bufferLength) { startPosn = this.bufferPosn = 0; if (prevCharCR) bytesConsumed ++; this.bufferLength = this.in.read(this.buffer); if (this.bufferLength <= 0) break; } for (; this.bufferPosn < this.bufferLength; this.bufferPosn ++) { if (this.buffer[this.bufferPosn] == LF) { newlineLength = (prevCharCR) ? 2 : 1; this.bufferPosn ++; break; } if (prevCharCR) { newlineLength = 1; break; } prevCharCR = this.buffer[this.bufferPosn] == CR; } int readLength = this.bufferPosn - startPosn; if ((prevCharCR) && (newlineLength == 0)) --readLength; bytesConsumed += readLength; int appendLength = readLength - newlineLength; if (appendLength > maxLineLength - txtLength) { appendLength = maxLineLength - txtLength; } if (appendLength > 0) { str.append(this.buffer, startPosn, appendLength); txtLength += appendLength; } } while ((newlineLength == 0) && (bytesConsumed < maxBytesToConsume)); if (bytesConsumed > (long)Integer.MAX_VALUE) throw new IOException("Too many bytes before newline: " + bytesConsumed); return (int)bytesConsumed; } //以下是hadoop-core中LineReader的源码_end }
2、已经按主键key排好序了,并保证相同主键key一定是在一起的,假设每条记录的第一个字段为主键,那么如果沿用上面的LineReader,需要在核心方法readLine中对前后两条记录的id进行equals判断,如果不同才进行split,如果相同继续下一条记录的判断。代码就不再贴了,但需要注意的地方,依旧是前后两个buffer进行交接的时候,非常有可能一条记录被切成了两半,一半在前一个buffer中,一半在后一个buffer中。
这种方式的好处在于少去了reduce操作,会大大地提高效率,其实mapper的过程相当的快,费时的通常是reduce。