两种方法:
一、递归
有先序序列得到根节点的值,创建根节点,再递归构造左子树,右子树。 由先序得到根结点,再在中序序列找到根节点,根节点左边就是左子树,右边就是右子树。
在中序序列中找根节点,就可以用到哈希结构,这里是想得到她的坐标,所以value存坐标。
Java:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map<Integer,Integer> indexMap;
public TreeNode myBuildTree(int[] preorder,int[] inorder,int preLeft,int preRight,int inLeft,int inRight){
if(preLeft>preRight||inLeft>inRight) return null;
int pre_rootindex=preLeft;
int in_rootindex=indexMap.get(preorder[preLeft]);
TreeNode root=new TreeNode(preorder[preLeft]);
root.left=myBuildTree(preorder,inorder,preLeft+1,in_rootindex-inLeft+pre_rootindex,inLeft,in_rootindex-1);
root.right=myBuildTree(preorder,inorder,in_rootindex-inLeft+pre_rootindex+1,preRight,in_rootindex+1,inRight);
return root;
}
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n=preorder.length;
indexMap=new HashMap<Integer,Integer>();
for(int i=0;i<n;i++){
indexMap.put(inorder[i],i);
}
return myBuildTree(preorder,inorder,0,n-1,0,n-1);
}
}
C++:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private: unordered_map<int,int> indexMap;
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n=preorder.size();
//indexMap=new HashMap<Integer,Integer>();
for(int i=0;i<n;i++){
indexMap.emplace(inorder[i],i);
}
return myBuildTree(preorder,inorder,0,n-1,0,n-1);
}
TreeNode* myBuildTree(vector<int> preorder,vector<int> inorder,int preLeft,int preRight,int inLeft,int inRight){
if(preLeft>preRight||inLeft>inRight) return nullptr;
int pre_rootindex=preLeft;
int in_rootindex=indexMap.at(preorder[preLeft]);
TreeNode *root=new TreeNode(preorder[preLeft]);
root->left=myBuildTree(preorder,inorder,preLeft+1,in_rootindex-inLeft+pre_rootindex,inLeft,in_rootindex-1);
root->right=myBuildTree(preorder,inorder,in_rootindex-inLeft+pre_rootindex+1,preRight,in_rootindex+1,inRight);
return root;
}
};
二、迭代,用到栈
先序:根左右 <-
中序:左根右 ->
补充:当先序与中序相等时,此结点为某结点的右子树,寻找父节点的方法是:倒序遍历先序(栈中的先序),正序遍历中序,两者最后一个相等的结点即为父节点.
Java:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
if(preorder==null||preorder.length==0) return null;
TreeNode root=new TreeNode(preorder[0]);
Deque<TreeNode> stack=new LinkedList<TreeNode>();
stack.push(root);
int inorderIndex=0;
for(int i=1;i<preorder.length;i++){
int preorderVal=preorder[i];//待判断的结点
TreeNode node=stack.peek();//栈顶结点
if(node.val!=inorder[inorderIndex]){//先序与中序不相等,则为左子树
node.left=new TreeNode(preorderVal);
stack.push(node.left);
}
else{//相等,则为某个节点的右子树,寻找该父节点
while(!stack.isEmpty()&&stack.peek().val==inorder[inorderIndex]){
node=stack.pop();
inorderIndex++;
}
node.right=new TreeNode(preorderVal);
stack.push(node.right);
}
}
return root;
}
}
C++:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if(preorder.size()==0||inorder.size()==0) return nullptr;
stack<TreeNode*> sta;
TreeNode* root=new TreeNode(preorder[0]);
sta.push(root);
int inorderIndex=0;
for(int i=1;i<preorder.size();i++){
TreeNode* node=sta.top();
if(node->val!=inorder[inorderIndex]){
node->left=new TreeNode(preorder[i]);
sta.push(node->left);
}
else{
while(!sta.empty()&&sta.top()->val==inorder[inorderIndex]){
node=sta.top();
sta.pop();
inorderIndex++;
}
node->right=new TreeNode(preorder[i]);
sta.push(node->right);
}
}
return root;
}
};