德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet

前戏

最近出了很多论文,各种SOTA。比如(点击可访问):

商汤等提出:统一多目标跟踪框架

亚马逊提出:用于人群计数的尺度感知注意力网络

今天头条推送的是目前人脸检测方向的SOTA论文:改进SRN人脸检测算法。本文要介绍的是目前(2019-01-26) one-stage目标检测中最强算法:ExtremeNet。

正文

《Bottom-up Object Detection by Grouping Extreme and Center Points》

德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet

arXiv: https://arxiv.org/abs/1901.08043

github: https://github.com/xingyizhou/ExtremeNet

作者团队:UT Austin

注:2019年01月23日刚出炉的paper

Abstract:With the advent of deep learning, object detection drifted from a bottom-up to a top-down recognition problem. State of the art algorithms enumerate a near-exhaustive list of object locations and classify each into: object or not. In this paper, we show that bottom-up approaches still perform competitively. We detect four extreme points (top-most, left-most, bottom-most, right-most) and one center point of objects using a standard keypoint estimation network. We group the five keypoints into a bounding box if they are geometrically aligned. Object detection is then a purely appearance-based keypoint estimation problem, without region classification or implicit feature learning. The proposed method performs on-par with the state-of-the-art region based detection methods, with a bounding box AP of 43.2% on COCO test-dev. In addition, our estimated extreme points directly span a coarse octagonal mask, with a COCO Mask AP of 18.9%, much better than the Mask AP of vanilla bounding boxes. Extreme point guided segmentation further improves this to 34.6% Mask AP.

德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet
德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet
Illustration of our object detection method

德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet

Illustration of our framework

德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet

Illustration of our object detection method

基础工作

Extreme and center points

Keypoint detection

CornerNet

Deep Extreme Cut

创新点

Center Grouping

Ghost box suppression

Edge aggregation

Extreme Instance Segmentation

实验结果

ExtremeNet有多强,看下面的图示就知道了,在COCO test-dev数据集上,mAP为43.2,在one-stage detector中,排名第一。可惜的是没有给出时间上的对比,论文中只介绍说测试一幅图像,耗时322ms(3.1 FPS)。

德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet

State-of-the-art comparison on COCO test-dev

想要了解最新最快最好的论文速递、开源项目和干货资料,欢迎加入CVer学术交流群。涉及图像分类、目标检测、图像分割、人脸检测&识别、目标跟踪、GANs、学术竞赛交流、Re-ID、风格迁移、医学影像分析、姿态估计、OCR、SLAM、场景文字检测&识别和超分辨率等方向。

上一篇:hive 结合执行计划 分析 limit 执行原理


下一篇:Spark学习之路 (十)SparkCore的调优之Shuffle调优