HDU 1452 Happy 2004(因子和的积性函数)

题目链接

题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余。

思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细。

在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数。  

在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。

若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。

s(6)=s(2)*s(3)=3*4=12;

s(20)=s(4)*s(5)=7*6=42;

再看 s(50)= 1+2+5+10+25+50=93=3*31=s(2)*s(25),s(25)=1+5+25=31.

这在数论中叫积性函数,当gcd(a,b)=1时 s(a*b)=s(a)*s(b);

如果p是素数 : s(p^n)=1+p+p^2+...+p^n= (p^(n+1)-1) /(p-1)-----其实就是等比数列求和公式 (1)

再看本题 :

计算因子和 s(2004^X) mod 29 ,

2004=2^2 *3 *167

2004^X=4^X * 3^X *167^X

s(2004^X) ) = (s(2^2X))) * (s(3^X))) * (s(167^X))) 而 167%29=22

s(2004^X) ) = (s(2^2X))) * (s(3^X))) * (s(22^X)))

a=s(2^2X)=(2^(2X+1)-1) //根据(1)

b=s(3^X)= (3^(X+1)-1)/2 //根据(1)

c=s(22^X)= (22^(X+1)-1)/21 //根据(1)

%运算法则 

1. (a*b) %p= ( a%p) *(b%p) 乘法的

2. (a/b) %p= ( a *b^(-1)%p) 除法的

s(2004^X)=(2^(2X+1)-1)* (3^(X+1)-1)/2  *(22^(X+1)-1)/21

(a*b)/c %M= a%M* b%M  * inv(c)

c*inv(c)=1 %M    模为1的所有数  inv(c)为最小可以被c整除的

inv(2)=15,  inv(21)=18    2*15=1 mod 29, 18*21=1 mod 29

s(2004^X)=((2^(2X+1)-1)* (3^(X+1)-1)/2  *(22^(X+1)-1)/21)mod 29  =((2^(2X+1)-1)* (3^(X+1)-1)*15 *(22^(X+1)-1)*18)mod29

b^(-1)是 b的逆元素(%p)即上面的inv

2的逆元素是15  ,因为2*15=30 % 29=1 % 29

21的逆元素是18  ,因为21*18=378% 29 =1 % 29

因此

a=(powi(2,2*x+1,29)-1)% 29;

b=(powi(3,x+1,29)-1)*15 % 29;

c=(powi(22,x+1,29)-1)*18 % 29;

ans=(a*b)% 29*c % 29;

 //
#include <stdio.h>
#include <math.h>
#include <iostream> using namespace std ; int multimod(int a,int n)//乘方模
{
int res = ;
while(n)
{
if(n & )
{
res *= a ;
res %= ;
}
a *= a ;
a %= ;
n >>= ;
}
return res ;
}
int main()
{
int x ;
while(~scanf("%d",&x))
{
if(x == ) break ;
int a = (multimod(,*x+)-) ;
int b = (multimod(,x+)-)* ;
int c = (multimod(,x+)-)* ;
printf("%d\n",(a*b*c)%) ;
}
return ;
}
上一篇:node.js 通过post上传图片并显示


下一篇:瑞柏匡丞:网站建设的趋势