Python数据结构——二叉树的实现

1. 二叉树

二叉树(binary tree)中的每个节点都不能有多于两个的儿子。

Python数据结构——二叉树的实现

1.1 二叉树列表实现

如上图的二叉树可用列表表示:

tree=['A',  #root
['B', #左子树
['D',[],[]],
['E',[],[]]],
['C', #右子树
['F',[],[]],
[]]
]

实现:

def BinaryTree(item):
return [item,[],[]]
def insertLeft(tree,item):
leftSubtree=tree.pop(1)
if leftSubtree:
tree.insert(1,[item,leftSubtree,[]])
else:
tree.insert(1,[item,[],[]])
return tree
def insertRight(tree,item):
rightSubtree=tree.pop(2)
if rightSubtree:
tree.insert(2,[item,[],rightSubtree])
else:
tree.insert(2,[item,[],[]])
return tree
def getLeftChild(tree):
return tree[1]
def getRightChild(tree):
return tree[2]

要实现下图的树:

Python数据结构——二叉树的实现

  

tree=BinaryTree('a')
insertLeft(tree,'b')
insertRight(tree,'c')
insertRight((getLeftChild(tree)),'d')
insertLeft((getRightChild(tree)),'e')
insertRight((getRightChild(tree)),'f')

1.2 二叉树的类实现

class BinaryTree(object):
def __init__(self,item):
self.key=item
self.leftChild=None
self.rightChild=None
def insertLeft(self,item):
if self.leftChild==None:
self.leftChild=BinaryTree(item)
else:
t=BinaryTree(item)
t.leftChild=self.leftChild
self.leftChild=t
def insertRight(self,item):
if self.rightChild==None:
self.rightChild=BinaryTree(item)
else:
t=BinaryTree(item)
t.rightChild=self.rightChild
self.rightChild=t

2. 表达式树

表达式树(expression tree)的树叶是操作数,其他节点为操作符。

Python数据结构——二叉树的实现

图   ((7+3)*(5-2))的表达式树表示

2.1 根据中缀表达式构造表达式树:

遍历表达式:

1.建立一个空树

2.遇到'(',为当前的Node添加一个left child,并将left child当做当前Node。

3.遇到数字,赋值给当前的Node,并返回parent作为当前Node。

4.遇到('+-*/'),赋值给当前Node,并添加一个Node作为right child,将right child当做当前的Node。

5.遇到')',返回当前Node的parent。

def buildexpressionTree(exp):
tree=BinaryTree('')
stack=[]
stack.append(tree)
currentTree=tree
for i in exp:
if i=='(':
currentTree.insertLeft('')
stack.append(currentTree)
currentTree=currentTree.leftChild
elif i not in '+-*/()':
currentTree.key=int(i)
parent=stack.pop()
currentTree=parent
elif i in '+-*/':
currentTree.key=i
currentTree.insertRight('')
stack.append(currentTree)
currentTree=currentTree.rightChild
elif i==')':
currentTree=stack.pop()
else:
raise ValueError
return tree

上述算法对中缀表达式的写法要求比较繁琐,小括号应用太多,例如要写成(a+(b*c))的形式。

用后缀表达式构建表达式树会方便一点:如果符号是操作数,建立一个单节点并将一个指向它的指针推入栈中。如果符号是一个操作符,从栈中弹出指向两棵树T1和T2的指针并形成一棵新的树,树的根为此操作符,左右儿子分别指向T2和T1.

def build_tree_with_post(exp):
stack=[]
oper='+-*/'
for i in exp:
if i not in oper:
tree=BinaryTree(int(i))
stack.append(tree)
else:
righttree=stack.pop()
lefttree=stack.pop()
tree=BinaryTree(i)
tree.leftChild=lefttree
tree.rightChild=righttree
stack.append(tree)
return stack.pop()

3.树的遍历

3.1 先序遍历(preorder travelsal)

先打印出根,然后递归的打印出左子树、右子树,对应先缀表达式

def preorder(tree,nodelist=None):
if nodelist is None:
nodelist=[]
if tree:
nodelist.append(tree.key)
preorder(tree.leftChild,nodelist)
preorder(tree.rightChild,nodelist)
return nodelist

  

3.2 中序遍历(inorder travelsal)

先递归的打印左子树,然后打印根,最后递归的打印右子树,对应中缀表达式

def inorder(tree):
if tree:
inorder(tree.leftChild)
print tree.key
inorder(tree.rightChild)

3.3 后序遍历(postorder travelsal)

递归的打印出左子树、右子树,然后打印根,对应后缀表达式

def postorder(tree):
if tree:
for key in postorder(tree.leftChild):
yield key
for key in postorder(tree.rightChild):
yield key
yield tree.key

3.4 表达式树的求值

def postordereval(tree):
operators={'+':operator.add,'-':operator.sub,'*':operator.mul,'/':operator.truediv}
leftvalue=None
rightvalue=None
if tree:
leftvalue=postordereval(tree.leftChild)
rightvalue=postordereval(tree.rightChild)
if leftvalue and rightvalue:
return operators[tree.key](leftvalue,rightvalue)
else:
return tree.key

  

上一篇:es6 - 一共有 6 种声明变量的方法(var, function, let, const, class, import)


下一篇:Android 2.3.5源码 更新至android 4.4,能够下载,度娘网盘