链接:
https://www.acwing.com/problem/content/254/
题意:
给定一个有N个点(编号0,1,…,N-1)的树,每条边都有一个权值(不超过1000)。
树上两个节点x与y之间的路径长度就是路径上各条边的权值之和。
求长度不超过K的路径有多少条。
思路:
点分治, 就是将一棵树根据他的重心分成多颗子树求解.
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e4+10;
const int INF = 1e9;
struct Edge
{
int to;
int dis;
};
vector<Edge> G[MAXN];
int Size[MAXN], Cnt[MAXN];
int Vis[MAXN], Dis[MAXN];
int root, maxroot;
int n, k, cnt, treesize;
LL ans = 0;
void GetRoot(int u, int fa)
{
Size[u] = 1;
int num = 0;
for (int i = 0;i < G[u].size();i++)
{
int to = G[u][i].to;
if (to == fa || Vis[to] == 1)
continue;
GetRoot(to, u);
Size[u] += Size[to];
num = max(num, Size[to]);
}
num = max(num, treesize-Size[u]);
if (num < maxroot)
{
root = u;
maxroot = num;
}
}
void GetDis(int u, int fa)
{
Cnt[++cnt] = Dis[u];
for (int i = 0;i < G[u].size();i++)
{
int to = G[u][i].to;
if (to == fa || Vis[to] == 1)
continue;
Dis[to] = Dis[u] + G[u][i].dis;
GetDis(to, u);
}
}
LL Cal(int u, int val)
{
cnt = 0;
Dis[u] = val;
GetDis(u, 0);
LL sum = 0;
int l = 1, r = cnt;
sort(Cnt+1, Cnt+1+cnt);
while (l < r)
{
if (Cnt[l]+Cnt[r] <= k)
sum += r-l, ++l;
else
--r;
}
return sum;
}
void Dfs(int u)
{
ans += Cal(u, 0);
Vis[u] = 1;
for (int i = 0;i < G[u].size();i++)
{
int to = G[u][i].to;
if (Vis[to] == 1)
continue;
ans -= Cal(to, G[u][i].dis);
treesize = Size[to];
maxroot = INF;
GetRoot(to, 0);
Dfs(root);
}
}
int main()
{
while(~scanf("%d%d", &n, &k) && (n||k))
{
ans = 0;
for (int i = 1;i <= n;i++)
G[i].clear();
memset(Vis, 0, sizeof(Vis));
memset(Size, 0, sizeof(Size));
memset(Cnt, 0, sizeof(Cnt));
int u, v, w;
for (int i = 1;i < n;i++)
{
scanf("%d%d%d", &u, &v, &w);
u++, v++;
// cout << u << ' ' << v << ' ' << w << endl;
G[u].push_back(Edge{v, w});
G[v].push_back(Edge{u, w});
}
treesize = n;
maxroot = INF;
GetRoot(1, 0);
Dfs(root);
printf("%lld\n", ans);
}
return 0;
}