题意:
一颗有根树,支持询问点到根路径权值和,子树加,换父亲
欧拉序列怎么求路径权值和?
一个点的权值只会给自己的子树中的点贡献,入栈权值正出栈权值负,求前缀和就行了!
和上题一样,伪ETT大法好
注意本题的子树需要根,所以需要找到子树区间左右的前驱和后继节点把他们splay出来才能得到子树区间,不能直接$l-1, r+1$,一开始写错了
然后注意下放标记,splay需要记录splay子树里有几个入栈几个出栈
加强版:询问任意一条路径$(u,v)$
当然需要减去lca了,于是用一个LCT维护树的形态
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define lc t[x].ch[0]
#define rc t[x].ch[1]
#define pa t[x].fa
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=2e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n, a[N], x, y, Q, fa[N]; char s[];
struct edge{int v, ne;} e[N];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
}
pii dfn[N]; int dfc, eul[N];
void dfs(int u) {
dfn[u].fir = ++dfc; eul[dfc] = u;
for(int i=h[u]; i; i=e[i].ne) dfs(e[i].v);
dfn[u].sec = ++dfc; eul[dfc] = -u;
} struct meow{int ch[], fa, v, sl, sr, type; ll sum, tag;} t[N];
int root, sz;
inline int wh(int x) {return t[pa].ch[] == x;}
inline void update(int x) {
t[x].sum = t[lc].sum + t[rc].sum + t[x].v;
t[x].sl = t[lc].sl + t[rc].sl + (t[x].type==);
t[x].sr = t[lc].sr + t[rc].sr + (t[x].type==-);
} inline void paint(int x, int d) {
t[x].sum += (ll)d*(t[x].sl - t[x].sr);
t[x].v += d*t[x].type;
t[x].tag += d;
}
inline void pushDown(int x) { //printf("pushDown %d\n",x);
if(t[x].tag) { //puts("yes");
if(lc) paint(lc, t[x].tag);
if(rc) paint(rc, t[x].tag);
t[x].tag = ;
}
}
void pd(int x) { if(pa) pd(pa); pushDown(x); } inline void rotate(int x) {
int f=t[x].fa, g=t[f].fa, c=wh(x);
if(g) t[g].ch[wh(f)] = x; t[x].fa=g;
t[f].ch[c] = t[x].ch[c^]; t[t[f].ch[c]].fa=f;
t[x].ch[c^] = f; t[f].fa=x;
update(f); update(x);
}
inline void splay(int x, int tar) {
pd(x);
for(; pa!=tar; rotate(x))
if(t[pa].fa != tar) rotate(wh(x)==wh(pa) ? pa : x);
if(tar==) root=x;
} void build(int &x, int l, int r, int f) {
int mid = (l+r)>>; x=mid;
t[x].fa=f;
if(eul[x]>) t[x].type = , t[x].v = a[eul[x]];
else t[x].type = -, t[x].v = -a[-eul[x]];
if(l<mid) build(lc, l, mid-, x);
if(mid<r) build(rc, mid+, r, x);
update(x);
} inline int pre(int x) {
x = lc; while(rc) x = rc; return x;
}
inline int nex(int x) {
x = rc; while(lc) x = lc; return x;
}
inline void Split(int &p, int &x) {
splay(p, ); p = pre(p);
splay(x, ); x = nex(x);
splay(p, ); splay(x, p);
} ll Que(int u) {
int p = dfn[].fir, x = dfn[u].fir;
Split(p, x);
return t[lc].sum;
} void Cha(int u, int far) {
int p = dfn[u].fir, x = dfn[u].sec;
Split(p, x);
int q = lc;
lc = t[q].fa = ;
update(x); update(p); p = dfn[far].fir; splay(p, );
x = nex(p); splay(x, p);
lc = q; t[q].fa = x;
update(x); update(p);
} void AddVal(int u, int d) {
int p = dfn[u].fir, x = dfn[u].sec;
Split(p, x);
paint(lc, d);
} int main() {
//freopen("in","r",stdin);
freopen("galaxy.in", "r", stdin);
freopen("galaxy.out", "w", stdout);
n=read();
for(int i=; i<=n; i++) ins(read(), i);
for(int i=; i<=n; i++) a[i]=read();
dfc=; dfs(); dfc++;
build(root, , dfc, );
Q=read();
for(int i=; i<=Q; i++) {
scanf("%s", s); x=read();
if(s[]=='Q') printf("%lld\n", Que(x));
else if(s[]=='C') Cha(x, read());
else AddVal(x, read());
}
}