模板摘自:ACM国际大学生程序设计竞赛 算法与实现 计算几何篇
计算几何
3.1多边形
3.1.1几何误差
const double eps = 1e-8;
int cmp (double x) {
if (fabs(x) < eps) return 0;
if (x > 0) return 1;
return -1;
}
3.1.2计算几何点类
函数 | 用法 |
---|---|
double sqr(double x) |
计算平方 |
double det(const point &a, const point &b) |
计算两个向量的叉积 |
double dot(const point &a, const point &b) |
计算两个向量的点积 |
double dist(const point &a, const point &b) |
计算两个点的距离 |
point rotate_point(const point &p, double A) |
向量op绕原点逆时针旋转A(弧度) |
点积
几何意义:|AC|*|AD|
A
B
→
∗
A
C
→
=
∣
A
B
∣
⋅
∣
A
C
∣
⋅
c
o
s
θ
\overrightarrow{AB}*\overrightarrow{AC} = |AB|\cdot|AC|\cdot cos \theta
AB
∗AC
=∣AB∣⋅∣AC∣⋅cosθ
如果点积是正的,那就代表在1,4象限
负的就代表在2,3象限
叉积
几何意义:|AC|*|BD|,即三角形abc面积的两倍
A
B
→
∗
A
C
→
=
∣
A
B
∣
⋅
∣
A
C
∣
⋅
s
i
n
θ
\overrightarrow{AB}*\overrightarrow{AC} = |AB|\cdot|AC|\cdot sin \theta
AB
∗AC
=∣AB∣⋅∣AC∣⋅sinθ
如果是正的,就代表在12象限
负的就是34象限
const double pi = acos(-1.0);
inline double sqr (double x) {
return x*x;
}
struct point {
double x, y;
point() {}
point(double x, double y) : x(a), y(b) {}
void input() {
scanf("%lf%lf", &x, &y);
// cin>>x>>y;
}
friend point operator + (const point &a, const point &b) {
return point(a.x + b.x, a.y + b.y);
}
friend point operator - (const point &a, const point &b) {
return point(a.x - b.x, a.y - b.y);
}
friend bool operator == (const point &a, const point &b) {
return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0;
}
friend point operator * (const point &a, const double &b) {
return point(a.x * b, a.y * b);
}
friend point operator * (const double &a, const point &b) {
return point(a * b.x, a * b.y);
}
friend point operator / (const point &a, const double &b) {
return point(a.x / b, a.y / b);
}
double norm() {//计算长度
return sqrt(sqr(x) + sqr(y));
}
}
//计算两个向量的叉积
double det (const point &a, const point &b) {
return a.x*b.y - a.y*b.x;
}
//计算两个向量的点积
double dot (const point &a, const point &b) {
return a.x*b.x + a.y*b.y;
}
double dist (const point &a, const point &b) {
return (a - b).norm();
}
double rotate_point (const point &p, double A) {
double tx = p.x, ty = p.y;
return point (tx * cos(A) - ty * sin(A), tx * sin(A) + ty * cos(A));
}