文章目录
437. 路径总和 III【dfs+前缀和】
给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。
路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
示例 1:
输入:root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
输出:3
解释:和等于 8 的路径有 3 条,如图所示。
示例 2:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:3
提示:
二叉树的节点个数的范围是 [0,1000]
-109 <= Node.val <= 109
-1000 <= targetSum <= 1000
递归
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int pathSumIn(TreeNode root,int targetSum){
int ans=0;
if(root==null)return ans;
if(targetSum==root.val)ans++;
ans+=pathSumIn(root.left,targetSum-root.val)+pathSumIn(root.right,targetSum-root.val);
return ans;
}
public int pathSum(TreeNode root, int targetSum) {
int ans=0;
if(root==null)return 0;
ans=pathSum(root.left,targetSum)+pathSum(root.right,targetSum);
if(targetSum==root.val)ans++;
ans+=pathSumIn(root.left,targetSum-root.val)+pathSumIn(root.right,targetSum-root.val);
//System.out.println(root.val+" "+res);
return ans;
}
}
时间复杂度O(n^2)
空间复杂度O(n)
前缀和
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private HashMap<Integer,Integer> map= new HashMap<>();
private int ans=0;
private void dfs(TreeNode root, int targetSum,int cur){
if(root==null)return;
cur+=root.val;
ans+=map.getOrDefault(cur-targetSum,0);
//System.out.println(cur+" "+map.getOrDefault(cur-targetSum,0));
map.put(cur,map.getOrDefault(cur,0)+1);
dfs(root.left,targetSum,cur);
dfs(root.right,targetSum,cur);
map.put(cur,map.getOrDefault(cur,0)-1);
}
public int pathSum(TreeNode root, int targetSum) {
if(root==null)return 0;
map.put(0,1);
dfs(root,targetSum,0);
return ans;
}
}
求什么之和的应该都想一下前缀和,而且从根到本节点只有一个和
时间复杂度O(n)
空间复杂度O(n)
注意开始前插入(0,1)