要求:路径方向向下,总和为target
思路:
法一:暴力遍历,对每个节点,往下查其和是否为target,注意查到还不能返回,因为后面可能有负数。击败50,83
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void dfs(TreeNode* root,int &targetSum,int &ans){
if(root==nullptr)return;
cal(root,targetSum,ans);
dfs(root->left,targetSum,ans);
dfs(root->right,targetSum,ans);
}
void cal(TreeNode* root,int targetSum,int &ans){
if(root==nullptr)return;
if(targetSum==root->val)++ans;
cal(root->left,targetSum-root->val,ans);
cal(root->right,targetSum-root->val,ans);
}
int pathSum(TreeNode* root, int targetSum) {
if(root==nullptr)return 0;
int ans=0;
dfs(root,targetSum,ans);
return ans;
}
};
法二:上面是以某节点为起点的路径,且会出现重复遍历。可以考虑以某节点为结尾的路径,遍历到某节点时,找前面有几个点到该点为target,即sum[b]-sum[a]=target,前缀和,明显得先统计完当前的再往下遍历(左右),统计就是看哈希表sum[b]-target出现次数,哈希表存的是元素出现的次数,要注意的是,本解法好处在于一次遍历即可。注意sum[0]有一条即都不选
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
unordered_map<int,int> sum;
int ans;
void dfs(TreeNode* root,int &targetSum,int cursum){
if(root==nullptr)return;
cursum+=root->val;
ans+=sum[cursum-targetSum];
sum[cursum]++;
dfs(root->left,targetSum,cursum);
dfs(root->right,targetSum,cursum);
sum[cursum]--;
}
int pathSum(TreeNode* root, int targetSum) {
if(root==nullptr)return 0;
ans=0;
sum[0]=1;
dfs(root,targetSum,0);
return ans;
}
};