centos7配置hadoop集群

一:测试环境搭建规划:

主机名称 IP 用户 HDFS YARN
hadoop11 192.168.1.101 hadoop NameNode,DataNode NodeManager
hadoop12 192.168.1.102 hadoop DataNode NodeManager
hadoop13  192.168.1.103 hadoop DataNode,SecondaryNameNode NodeManager
hadoop14 192.168.1.104 hadoop DataNode ResourceManager,NodeManager

二:hadoop安装:

1:新建hadoop用户:

useradd hadoop

passwd hadoop

su hadoop

mkdir /home/hadoop/apps

mkdir /home/hadoop/data

三:关闭防火墙:

systemctl stop firewalld

systemctl disable firewalld

四:关闭selinux:

vim /etc/sysconfig/selinux

修改SELINUX=enforcing为SELINUX=disabled

五:安装Java:

5-1下载JDK:

https://www.oracle.com/technetwork/java/javase/downloads/index.html

https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html

点选 Accept License Agreement

下载jdk-11.0.1_linux-x64_bin.tar.gz

把下载好的jdk-11.0.1_linux-x64_bin.tar.gz,上传到服务器 /usr/local目录

tar -zxvf jdk-11.0.1_linux-x64_bin.tar.gz

5-2添加环境变量:

vim /etc/profile

在结尾添加:

#java
export JAVA_HOME='/usr/local/jdk-11.0.1'
export PATH=$JAVA_HOME/bin:$PATH

保存退出后,执行:

source /etc/profile

查看版本,确定环境变量是否生效:

java -version

六:安装hadoop

6-1下载hadoop:

https://hadoop.apache.org/releases.html

选择binary文件

拷贝镜像地址,下载

wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.8.5/hadoop-2.8.5.tar.gz

6-2 解压到指定目录:

tar -zxvf hadoop-2.8.5.tar.gz -C /home/hadoop/apps

 6-3修改配置文件:

cd /home/hadoop/apps/hadoop-2.8.5/etc/hadoop

配置Hadoop JDK路径修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径:

#export JAVA_HOME='/usr/local/jdk-11.0.1'

export JAVA_HOME='/usr/local/jdk1.8.0_191'

6-3-1 vim core-site.xml

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop11.zm.com:8020</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/data/hadoop/tmp</value>
</property>
</configuration>

fs.fefaultFS是NameNode的地址,

hadoop.tmp.dir是hadoop临时目录的地址,

应保证目录是已存在的,如不存在,需先创建。

6-3-2 vim hdfs-site.xml

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>
    <name>dfs.namenode.name.dir</name>
    <value>/home/hadoop/data/hadoop/name</value>
    <description>为了保证元数据的安全一般配置多个不同目录</description>
  </property>

<property>
    <name>dfs.datanode.data.dir</name>
    <value>/home/hadoop/data/hadoop/data</value>
    <description>datanode 的数据存储目录</description>
  </property>

<property>
    <name>dfs.replication</name>
    <value>2</value>
     <description>HDFS 的数据块的副本存储个数, 默认是3</description>
  </property>

<property>
    <name>dfs.namenode.secondary.http-address</name>
    <value>hadoop13.zm.com:50090</value>
    </property>

</configuration>

dfs.namenode.name.dir:namenode数据的存放地点。也就是namenode元数据存放的地方,记录了hdfs系统中文件的元数据。

dfs.datanode.data.dir: datanode数据的存放地点。也就是block块存放的目录了。

dfs.replication:hdfs的副本数设置。也就是上传一个文件,其分割为block块后,每个block的冗余副本个数,默认配置是3。

dfs.secondary.http.address:secondarynamenode 运行节点的信息,和 namenode 不同节点

dfs.namenode.secondary.http-address是指定secondaryNameNode的http访问地址和端口号,因为在规划中,我们将hadoop13规划为SecondaryNameNode服务器。

所以这里设置为:hadoop13.zm.com:50090

6-3-3 配置slave文件,slaves文件是指定HDFS上有哪些DataNode节点:

cd /home/hadoop/apps/hadoop-2.8.5

[hadoop@hadoop11 hadoop-2.8.5]$ vim slaves

hadoop11.zm.com
hadoop12.zm.com
hadoop13.zm.com
hadoop14.zm.com

6-3-4 cd /home/hadoop/apps/hadoop-2.8.5/etc/hadoop

vim yarn-site.xml

<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop14.zm.com</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value></value>
</property>
</configuration>

yarn.resourcemanager.hostname这个指定resourcemanager服务器指向hadoop14.zm.com,

yarn.log-aggregation-enable是配置是否启用日志聚集功能,

yarn.log-aggregation.retain-seconds是配置聚集的日志在HDFS上最多保存多长时间。

6-3-5 cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop11.zm.com:</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop11.zm.com:</value>
</property>
</configuration>

mapreduce.framework.name设置mapreduce任务运行在yarn上。

mapreduce.jobhistory.address是设置mapreduce的历史服务器安装在hadoop11机器上。

mapreduce.jobhistory.webapp.address是设置历史服务器的web页面地址和端口号。

 七:配置hosts文件:

回到root权限:su

vim /etc/hosts

127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
:: localhost localhost.localdomain localhost6 localhost6.localdomain6 192.168.1.201 hadoop11 hadoop11.zm.com 192.168.1.202 hadoop12 hadoop12.zm.com
192.168.1.203     hadoop13     hadoop13.zm.com 

192.168.1.204     hadoop14     hadoop14.zm.com

 八:SSH免密登陆

su hadoop

所有hadoop集群服务器:

su hadoop

cd /home/hadoop/.ssh

ssh-keygen -t rsa

将所有终端公钥文件拷贝到hadoop11:

  所有终端运行:

  ssh-copy-id -i hadoop11

登陆hadoop11终端的/home/hadoop/.ssh修改权限:

  chmod 600 authorized_keys

分发授权文件到其他终端:

  scp /home/hadoop/.ssh/authorized_keys hadoop12:/home/hadoop/.ssh/

scp /home/hadoop/.ssh/authorized_keys hadoop13:/home/hadoop/.ssh/

scp /home/hadoop/.ssh/authorized_keys hadoop14:/home/hadoop/.ssh/

每台机器用ssh命令连接下所有机器,第一次连接要输入yes,以后不用输入

九:hadoop分发到其他终端

拷贝hadoop11 /home/hadoop/apps目录内容到其他终端:

scp -rq data hadoop12:/home/hadoop/

拷贝hadoop11 /home/hadoop/data目录内容到其他终端:

scp -rq data hadoop12:/home/hadoop/

 十:配置hadoop环境变量(所有节点均需配置)

注意:

1、如果使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果使用普通用户进行安装。 vi ~/.bashrc 用户变量

vim .bashrc

# User specific aliases and functions

export HADOOP_HOME=/home/hadoop/apps/hadoop-2.8.
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

[hadoop@hadoop11 ~]$ source .bashrc

查看hadoop版本:hadoop version

[hadoop@hadoop11 ~]$ hadoop version
Hadoop 2.8.
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 0b8464d75227fcee2c6e7f2410377b3d53d3d5f8
Compiled by jdu on --10T03:32Z
Compiled with protoc 2.5.
From source with checksum 9942ca5c745417c14e318835f420733
This command was run using /home/hadoop/apps/hadoop-2.8./share/hadoop/common/hadoop-common-2.8..jar

十一:hadoop初始化

HDFS初始化只能在主节点上进行

如果需要重新初始化,先删除相关目录文件,

粗略做法是删除/home/hadoop/data/hadoop路径下

[hadoop@hadoop14 hadoop]$ ll
总用量
drwx------. hadoop hadoop 10月 : data
drwxrwxr-x. hadoop hadoop 10月 : name
drwxrwxr-x. hadoop hadoop 10月 : tmp
[hadoop@hadoop14 hadoop]$ pwd
/home/hadoop/data/hadoop

这几个目录的子目录;

[hadoop@hadoop11 ~]$ hadoop namenode -format

// :: INFO namenode.FSImage: Allocated new BlockPoolId: BP--198.8.8.201-
// :: INFO common.Storage: Storage directory /home/hadoop/data/hadoop/name has been successfully formatted.
// :: INFO namenode.FSImageFormatProtobuf: Saving image file /home/hadoop/data/hadoop/name/current/fsimage.ckpt_0000000000000000000 using no compression
// :: INFO namenode.FSImageFormatProtobuf: Image file /home/hadoop/data/hadoop/name/current/fsimage.ckpt_0000000000000000000 of size bytes saved in seconds.
// :: INFO namenode.NNStorageRetentionManager: Going to retain images with txid >=
// :: INFO util.ExitUtil: Exiting with status
// :: INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop11/198.8.8.201
************************************************************/

初始化后会自动在/home/hadoop/data/hadoop/name路径

建立current目录

生成:

-rw-rw-r--  hadoop hadoop  10月  : fsimage_0000000000000000000
-rw-rw-r-- hadoop hadoop 10月 : fsimage_0000000000000000000.md5
-rw-rw-r-- hadoop hadoop 10月 : seen_txid
-rw-rw-r-- hadoop hadoop 10月 : VERSION

十二:启动HDFS:

可以在集群中任何节点执行:

[hadoop@hadoop12 ~]$ start-dfs.sh

报错

[hadoop@hadoop12 ~]$ start-dfs.sh
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil (file:/home/hadoop/apps/hadoop-2.8./share/hadoop/common/lib/hadoop-auth-2.8..jar) to method sun.security.krb5.Config.getInstance()
WARNING: Please consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util.KerberosUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
Starting namenodes on [hadoop11.zm.com]
The authenticity of host 'hadoop11.zm.com (198.8.8.201)' can't be established.
ECDSA key fingerprint is SHA256:RlH2tSlCWblQ5jZ6DMuCt4+yEmYuWo5MZuqUTGesM9I.
ECDSA key fingerprint is MD5:de:e9:::c7:::0c:e6:8a::0e::5f:2b:8d.
Are you sure you want to continue connecting (yes/no)? no

关闭HDFS:

stop-dfs.sh

降低java版本到jdk1.8.0_191

 如步骤6-3修改集群所有节点配置文件:

cd /home/hadoop/apps/hadoop-2.8.5/etc/hadoop

配置Hadoop JDK路径修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径:

#export JAVA_HOME='/usr/local/jdk-11.0.1'

export JAVA_HOME='/usr/local/jdk1.8.0_191'

再次启动HDFS(任何节点均可执行):

start-dfs.sh

[hadoop@hadoop11 sbin]$ start-dfs.sh
Starting namenodes on [hadoop11.zm.com]
hadoop11.zm.com: starting namenode, logging to /home/hadoop/apps/hadoop-2.8./logs/hadoop-hadoop-namenode-hadoop11.out
hadoop11: starting datanode, logging to /home/hadoop/apps/hadoop-2.8./logs/hadoop-hadoop-datanode-hadoop11.out
hadoop13: starting datanode, logging to /home/hadoop/apps/hadoop-2.8./logs/hadoop-hadoop-datanode-hadoop13.out
hadoop14: starting datanode, logging to /home/hadoop/apps/hadoop-2.8./logs/hadoop-hadoop-datanode-hadoop14.out
hadoop12: starting datanode, logging to /home/hadoop/apps/hadoop-2.8./logs/hadoop-hadoop-datanode-hadoop12.out
Starting secondary namenodes [hadoop13.zm.com]
hadoop13.zm.com: starting secondarynamenode, logging to /home/hadoop/apps/hadoop-2.8./logs/hadoop-hadoop-secondarynamenode-hadoop13.out

在其他节点启动时会报询问信息

The authenticity of host 'hadoop13.zm.com (198.8.8.203)' can't be established.
ECDSA key fingerprint is SHA256:RlH2tSlCWblQ5jZ6DMuCt4+yEmYuWo5MZuqUTGesM9I.
ECDSA key fingerprint is MD5:de:e9:::c7:::0c:e6:8a::0e::5f:2b:8d.
Are you sure you want to continue connecting (yes/no)?

解决办法(所有节点执行):

进入root用户

su

vim /etc/ssh/ssh_config

加入如下两句

#   StrictHostKeyChecking ask
StrictHostKeyChecking no
UserKnownHostsFile /dev/null

start-dfs.sh执行后:

在/home/hadoop/data/hadoop/data中自动生成

[hadoop@hadoop11 data]$ ll
总用量
drwxrwxr-x hadoop hadoop 10月 : current
-rw-rw-r-- hadoop hadoop 10月 : in_use.lock

在/home/hadoop/data/hadoop/name中自动生成

[hadoop@hadoop11 name]$ ll
总用量
drwxrwxr-x hadoop hadoop 10月 : current
-rw-rw-r-- hadoop hadoop 10月 : in_use.lock

十三:启动YARN(只能在ResourceManager主节点执行):

[hadoop@hadoop14 ~]$ start-yarn.sh

[hadoop@hadoop14 ~]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-resourcemanager-hadoop11.out
hadoop12: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop12.out
hadoop13: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop13.out
hadoop14: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop14.out
hadoop11: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop11.out

start-yarn.sh执行后:

会在/home/hadoop/data/hadoop/tmp中自动生成

[hadoop@hadoop14 tmp]$ ll
总用量
drwxr-xr-x hadoop hadoop 10月 : nm-local-dir
[hadoop@hadoop14 nm-local-dir]$ ll
总用量
drwxr-xr-x hadoop hadoop 10月 : filecache
drwx------ hadoop hadoop 10月 : nmPrivate
drwxr-xr-x hadoop hadoop 10月 : usercache

此配置启动后,ResourceManager没有启动,无法访问:http://198.8.8.204:8088/

需要在所有节点添加ResourceManager配置:

vim vim yarn-site.xml

  See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration> <!-- Site specific YARN configuration properties --> <property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop14</value>
</property> <property>
<name>yarn.resourcemanager.address</name>
<value>${yarn.resourcemanager.hostname}:</value>
#ResourceManager 对客户端暴露的地址。客户端通过该地址向RM提交应用程序,杀死应用程序等。
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>${yarn.resourcemanager.hostname}:</value>
#ResourceManager 对ApplicationMaster暴露的访问地址。ApplicationMaster通过该地址向RM申请资源、释放资源等。
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>${yarn.resourcemanager.hostname}:</value>
#ResourceManager 对NodeManager暴露的地址。NodeManager通过该地址向RM汇报心跳,领取任务等。
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>${yarn.resourcemanager.hostname}:</value>
#ResourceManager 对管理员暴露的访问地址。管理员通过该地址向RM发送管理命令等。
</property> <property>
<name>yarn.resourcemanager.webapp.address</name>
# <value>198.8.8.204:</value>
<value>${yarn.resourcemanager.hostname}:</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value></value>
</property> </configuration>

保存配置,

在ResourceManager主节点hadoop14重启yarn:

stop-yarn.sh

start-yarn.sh

[hadoop@hadoop14 hadoop]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-resourcemanager-hadoop14.out
hadoop11: Warning: Permanently added 'hadoop11,198.8.8.201' (ECDSA) to the list of known hosts.
hadoop12: Warning: Permanently added 'hadoop12,198.8.8.202' (ECDSA) to the list of known hosts.
hadoop14: Warning: Permanently added 'hadoop14,198.8.8.204' (ECDSA) to the list of known hosts.
hadoop13: Warning: Permanently added 'hadoop13,198.8.8.203' (ECDSA) to the list of known hosts.
hadoop14: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop14.out
hadoop11: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop11.out
hadoop13: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop13.out
hadoop12: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.8./logs/yarn-hadoop-nodemanager-hadoop12.out
[hadoop@hadoop14 hadoop]$ jps
ResourceManager
DataNode
NodeManager
Jps

可以访问:http://198.8.8.204:8088/

十四:查看所有节点进程

jps

[hadoop@hadoop11 nm-local-dir]$ jps
NodeManager
DataNode
Jps
NameNode
[hadoop@hadoop12 nm-local-dir]$ jps
NodeManager
DataNode
Jps
[hadoop@hadoop13 nm-local-dir]$ jps
NodeManager
DataNode
Jps
SecondaryNameNode
[hadoop@hadoop14 nm-local-dir]$ jps
DataNode
NodeManager
Jps

十五:HDFS和YARN的WEB管理界面:

http://198.8.8.201:50070

十六:hadoop简单应用:

创建目录

[hadoop@hadoop11 ~]$ hadoop fs -mkdir -p /test/input

查看创建文件

hadoop fs -ls /

新建文件

vim words.txt

hello zhangsan
hello lisi
hello wangwu

上传文件

hadoop fs -put ~/words.txt /test/input

查看是否上传成功

hadoop fs -ls /test/input

下载文件

hadoop fs -get /test/input/words.txt /home/hadoop/

查看是否下载成功

cd /home/hadoop

ll

用wordcount测试:

[hadoop@hadoop11 hadoop]$ hadoop jar /home/hadoop/apps/hadoop-2.8.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.5.jar wordcount /test/input /test/output

// :: INFO client.RMProxy: Connecting to ResourceManager at hadoop14/198.8.8.204:
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1541142769004_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1541142769004_0001
// :: INFO mapreduce.Job: The url to track the job: http://hadoop14:8088/proxy/application_1541142769004_0001/
// :: INFO mapreduce.Job: Running job: job_1541142769004_0001
// :: INFO mapreduce.Job: Job job_1541142769004_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1541142769004_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

查看输出文件:

[hadoop@hadoop11 hadoop]$ hadoop fs -ls /test/output

[hadoop@hadoop11 hadoop]$ hadoop fs -ls /test/output
Found items
-rw-r--r-- hadoop supergroup -- : /test/output/_SUCCESS
-rw-r--r-- hadoop supergroup -- : /test/output/part-r-
[hadoop@hadoop11 hadoop]$ hadoop fs -cat /test/output/part-r-
hello
lisi
wangwu
zhangsan

参考文档:

https://www.cnblogs.com/qingyunzong/p/8496127.html

https://blog.csdn.net/hliq5399/article/details/78193113

上一篇:清空SQL Server数据库中所有表数据的方法


下一篇:少儿编程崛起?2020年4月编程语言排名发布——Java,C,Python分列前三,Scratch挤进前20