James Munkres Topology: Theorem 16.3

Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\).

Comment: To prove the identity of two topologies, we can either show they mutually contain each other or prove the equivalence of their bases. Because a topological basis has smaller number of elements or cardinality than the corresponding topology, proof via basis is more efficient.

Proof: Let \(\mathcal{C}\) be the topological basis of \(X\) and \(\mathcal{D}\) be the basis of \(Y\). Because \(A \subset X\) and \(B \subset Y\), the subspace topological bases of them are \(\mathcal{B}_A = \{C \cap A \vert \forall C \in \mathcal{C} \}\) and \(\mathcal{B}_B = \{D \cap B \vert \forall D \in \mathcal{D} \}\) respectively according to Lemma 16.1.

Due to Lemma 15.1, the basis of the product topology on \(A \times B\) is

\[
\mathcal{B}_{A \times B} = \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Meanwhile, the basis of the product topology on \(X \times Y\) is

\[
\mathcal{B}_{X \times Y} = \{ C \times D \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Restricting \(\mathcal{B}_{X \times Y}\) to the subset \(A \times B\), the basis of the subspace topology on \(A \times B\) is

\[
\begin{aligned}
\tilde{\mathcal{B}}_{A \times B} &= \{ (C \times D) \cap (A \times B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \} \\
&= \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \},
\end{aligned}
\]

which is the same as that of the product topology on \(A \times B\). Hence, this theorem is proved.

The above process of proof can be illustrated as below.

James Munkres Topology: Theorem 16.3

Remark: The above two routes for generating topology on \(A \times B\) must lead to the same result, otherwise, the theory itself is inappropriately proposed. A theory must be at least self-consistent before its debut in reality.

上一篇:从webview到flutter:详解iOS中的Web开发


下一篇:迅为iTOP-4412核心板调整电压