为什么需要标准化?
在说明为什么要标准化前,我们不妨说说一般的标准化是怎么做的:先求出数据的均值和方差,然后对每一个样本数据,先减去均值,然后除以方差,也就是(x-μ)/σ2,说白了就是转化成标准正态分布!这样,每个特征都转化成了同样的分布,不管原来的范围是什么,现在都基本限定在同样的范围内了。原数据的不同特征的范围可能会有很大差别,比如一批数据中“年龄”的范围就比较小,可能20岁 ~ 60岁之间,但是另一个特征“年收入”可能波动范围就很大,也许0.5万 ~ 1000万,这种情况下回导致我们的等高线图变得十分“扁平”,在梯度下降的时候会很容易走弯路,因此梯度下降会比较慢,精度也不高。但是经过标准化(也称归一化)之后,等高线就变规矩了,就很容易梯度下降了。
另外,对于图片数据的话,进行标准化很简单,因为RGB三个通道的范围都是255,我们对图片的处理就是直接除以255即可。
'''
Author: huajia
Date: 2021-11-10 14:46:51
LastEditors: huajia
LastEditTime: 2021-11-11 14:19:47
Description: 略略略
'''
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
from tqdm import tqdm
os.chdir("D:/下载/train/train")
# 读取图片的数量
n = 1000
weight = 64
height = 64
def init():
imgs = np.zeros((n, weight, height, 3), dtype=np.uint8)
imgs_lable = np.zeros((n, 1), dtype=np.uint8)
for i in tqdm(range(n)):
if(i % 2 == 0):
imgs[i] = cv2.resize(cv2.imread('cat.%d.jpg' %
i), (weight, height))
imgs_lable[i] = 1
else:
imgs[i] = cv2.resize(cv2.imread('dog.%d.jpg' %
i), (weight, height))
# if(i<10):
# plt.subplot(2,5,i+1)
# plt.imshow(imgs[i])
train = imgs.reshape(imgs.shape[0], -1).T/255.
train_lable = imgs_lable.T
print("imgs_shape:", imgs.shape, train.shape, train_lable.shape)
# plt.show()
return train,train_lable
def sigmoid(z):
a = 1.0/(1+np.exp(-z))
return a
def initialize_with_zeros(dim):
w = np.zeros((dim, 1))
b = 0
return w, b
def propagate(w, b, X, Y):
"""
传参:
w -- 权重, shape: (num_px * num_px * 3, 1)
b -- 偏置项, 一个标量
X -- 数据集,shape: (num_px * num_px * 3, m),m为样本数
Y -- 真实标签,shape: (1,m)
返回值:
cost, dw ,db,后两者放在一个字典grads里
"""
# 获取样本数m:
m = X.shape[1]
# 前向传播 :
A = sigmoid(np.dot(w.T, X)+b) # 调用前面写的sigmoid函数
cost = -(np.sum(Y*np.log(A)+(1-Y)*np.log(1-A)))/m
# 反向传播:
dZ = A-Y
dw = (np.dot(X, dZ.T))/m
db = (np.sum(dZ))/m
# 返回值:
grads = {"dw": dw,
"db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
# 定义一个costs数组,存放每若干次迭代后的cost,从而可以画图看看cost的变化趋势:
costs = []
# 进行迭代:
for i in range(num_iterations):
# 用propagate计算出每次迭代后的cost和梯度:
grads, cost = propagate(w, b, X, Y)
dw = grads["dw"]
db = grads["db"]
# 用上面得到的梯度来更新参数:
w = w - learning_rate*dw
b = b - learning_rate*db
# 每100次迭代,保存一个cost看看:
if i % 100 == 0:
costs.append(cost)
# 这个可以不在意,我们可以每100次把cost打印出来看看,从而随时掌握模型的进展:
if print_cost and i % 100 == 0:
print("Cost after iteration %i: %f" % (i, cost))
# 迭代完毕,将最终的各个参数放进字典,并返回:
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1, m))
A = sigmoid(np.dot(w.T, X)+b)
for i in range(m):
if A[0, i] > 0.5:
Y_prediction[0, i] = 1
else:
Y_prediction[0, i] = 0
return Y_prediction
def logistic_model(X_train, X_label, learning_rate=0.1, num_iterations=2000, print_cost=False):
# 获特征维度,初始化参数:
dim = X_train.shape[0]
W, b = initialize_with_zeros(dim)
# 梯度下降,迭代求出模型参数:
params, grads, costs = optimize(
W, b, X_train, X_label, num_iterations, learning_rate, print_cost)
W = params['w']
b = params['b']
#保存参数
np.savez('../../model.npz',w=W,b=b)
# 用学得的参数进行预测:
prediction_train = predict(W, b, X_train)
# 计算准确率,分别在训练集和测试集上:
accuracy_train = 1 - np.mean(np.abs(prediction_train - X_label))
print("Accuracy on train set:", accuracy_train)
# 为了便于分析和检查,我们把得到的所有参数、超参数都存进一个字典返回出来:
d = {"costs": costs,
"Y_prediction_train": prediction_train,
"w": W,
"b": b,
"learning_rate": learning_rate,
"num_iterations": num_iterations,
"train_acy": accuracy_train,
}
return d
def testModel(Y_test):
data = np.load('../../model.npz')
print(data['b'])
Y_res = sigmoid(np.dot(data['w'].T, Y_test)+data['b'])[0,0]
# print('y', Y_res)
return Y_res
if __name__ == '__main__':
# train,train_lable=init()
# d = logistic_model(train, train_lable, num_iterations = 20000, learning_rate = 0.005, print_cost = True)
imgtest = cv2.resize(cv2.imread('../../test/test/%d.jpg'%(np.random.randint(1,12500))), (weight, height))
# imgtest = cv2.resize(cv2.imread('../../test/test/5.jpg'), (weight, height))
test = imgtest.reshape(1, -1).T/255.
res=testModel(test)
plt.imshow(imgtest)
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('本张图片是猫的概率为%f%%'%(res*100))
plt.show()