【BZOJ1834】 网络扩容

Time Limit: 1000 ms   Memory Limit: 128 MB

Description

  给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

  输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

  输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

  5 8 2
  1 2 5 8
  2 5 9 9
  5 1 6 2
  5 1 1 8
  1 2 8 7
  2 5 4 9
  1 2 1 1
  1 4 2 1

Sample Output

  13 19
  30%的数据中,N<=100
  100%的数据中,N<=1000,M<=5000,K<=10
 

Solution

  第一问直接上裸SPFA最大流,对于输入每条边$(u,v,f,c)$,流量设为输入的$f$,而费用设为0。(EK)

  对于第二问,考虑第一问完成后的残余网络。对于残余网络上的每一条边,理应都可以0费用扩容;而残余网络上不存在的边,扩容就需要$w$(反向弧为$-w$)。

  那么直接在第一问跑完后的残余网络上建图,对于输入的每一条边$(u,v,f,c)$,流量设为$+\infty$,费用设为$w$(反向弧$-w$)。

  这样在两种边下跑费用流,会优先选择原来残余网络上费用为$0$的边来增广,那么0费用扩容的边刻画完成;其他的边需要付出费用的,也可以体现。

  最后,由$n$连向一个超级汇点$T$,流量为$k$,费用为$0$,跑费用流即可。

 


  

#include <cstdio>
#include <queue>
using namespace std;
const int N=,M=,INF=;
int n,m,k,tot=,e[M][],h[N];
int S,T,dis[N],inq[N],pre[N],which[N];
struct Edge{int v,f,c,next;}g[M*];
queue<int> q;
inline void addEdge(int u,int v,int f,int c=){
g[++tot].v=v; g[tot].f=f; g[tot].c=c; g[tot].next=h[u]; h[u]=tot;
g[++tot].v=u; g[tot].f=; g[tot].c=-c; g[tot].next=h[v]; h[v]=tot;
}
bool spfa(){
while(!q.empty()) q.pop();
q.push(S);
for(int i=;i<=T;i++) dis[i]=INF,inq[i]=pre[i]=;
dis[S]=; inq[S]=;
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=h[u],v;i;i=g[i].next)
if(g[i].f&&dis[u]+g[i].c<dis[v=g[i].v]){
dis[v]=dis[u]+g[i].c;
which[v]=i;
pre[v]=u;
if(!inq[v]){
inq[v]=;
q.push(v);
}
}
inq[u]=;
}
return dis[T]!=INF;
}
int solve(int type){
int mins,maxflow=,mincost=;
while(spfa()){
mins=INF;
for(int u=T;u!=S;u=pre[u])
if(g[which[u]].f<mins)
mins=g[which[u]].f;
maxflow+=mins; mincost+=mins*dis[T];
for(int u=T;u!=S;u=pre[u]){
g[which[u]].f-=mins;
g[which[u]^].f+=mins;
}
}
return !type?maxflow:mincost;
}
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=m;i++){
scanf("%d%d%d%d",&e[i][],&e[i][],&e[i][],&e[i][]);
addEdge(e[i][],e[i][],e[i][]);
}
S=; T=n;
printf("%d ",solve());
T=n+;
addEdge(n,T,k,);
for(int i=;i<=m;i++)
addEdge(e[i][],e[i][],INF,e[i][]);
printf("%d\n",solve());
}

奇妙代码

上一篇:ASP.NET Core Linux下为 dotnet 创建守护进程(必备知识)


下一篇:一些$LCT$的瓜皮题目