Spark(三): 安装与配置

   参见 HDP2.4安装(五):集群及组件安装 ,安装配置的spark版本为1.6, 在已安装HBase、hadoop集群的基础上通过 ambari 自动安装Spark集群,基于hadoop yarn 的运行模式。

目录:

  • Spark集群安装
  • 参数配置
  • 测试验证

Spark集群安装:


  • 在ambari -service 界面选择 “add Service",如图:
  • Spark(三): 安装与配置
  • 在弹出界面选中spark服务,如图:

Spark(三): 安装与配置

  • "下一步”,分配host节点,因为前期我们已经安装了hadoop 和hbase集群,按向导分配 spark history Server即可
  • 分配client,如下图:
    • Spark(三): 安装与配置
  • 发布安装,如下正确状态
    • Spark(三): 安装与配置

参数配置:


  • 安装完成后,重启hdfs 和 yarn
  • 查看 spark服务,spark thrift server 未正常启动,日志如下:
    16/08/30 14:13:25 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (512 MB per container)
    16/08/30 14:13:25 ERROR SparkContext: Error initializing SparkContext.
    java.lang.IllegalArgumentException: Required executor memory (1024+384 MB) is above the max threshold (512 MB) of this cluster! Please check the values of 'yarn.scheduler.maximum-allocation-mb' and/or 'yarn.nodemanager.resource.memory-mb'.
        at org.apache.spark.deploy.yarn.Client.verifyClusterResources(Client.scala:284)
        at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:140)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:530)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLEnv$.init(SparkSQLEnv.scala:56)
        at org.apache.spark.sql.hive.thriftserver.HiveThriftServer2$.main(HiveThriftServer2.scala:76)
        at org.apache.spark.sql.hive.thriftserver.HiveThriftServer2.main(HiveThriftServer2.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
  •  解决方案:调整yarn相关参数配置 yarn.nodemanager.resource.memory-mb、yarn.scheduler.maximum-allocation-mb

  •  yarn.nodemanager.resource.memory-mb

    表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,我本机的hdp2-3内存为4G,默认设置的值是512M,调整为如下图大小

  • yarn.scheduler.maximum-allocation-mb

    单个任务可申请的最多物理内存量,默认是8192(MB)。

  • Spark(三): 安装与配置
  • 保存配置,重启依赖该配置的服务,正常后如下图:

  •  Spark(三): 安装与配置

测试验证:


  • 在任一安装spark client机器(hdp4),将目录切换至 spark 安装目录的 bin目录下
  • 命令: ./spark-sql
  • sql命令: show database;  如下图
  • Spark(三): 安装与配置
  • 查看历史记录,如下:
  • Spark(三): 安装与配置

 转自 https://www.cnblogs.com/tgzhu/p/5821421.html

上一篇:Laravel 7 Deserialization Chain Summary


下一篇:ABP vNext V5 + VS2022+ .Net 6.0 学习笔记(1)