最长公共子序列 nlogn

先来个板子

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+, M = 1e6+, mod = 1e9+, inf = 1e9+;
typedef long long ll; struct node
{
int c;
int num;
} u[N]; int i,j,k = ,n,m,x,y = ,T = ,ans = ,big = ,cas = ,num = ,len = ;
bool flag = ; bool cmp(node a,node b)
{
if (a.c==b.c) return a.num>b.num;
return a.c<b.c;
} vector <int> p;
int a[N],b[N],c[N];
int lena,lenb,dp[N]; int main()
{
scanf("%d%d",&lena,&lenb);
for(int i=;i<lena;i++) scanf("%d",&a[i]);
for(int i=;i<lenb;i++) scanf("%d",&b[i]);
for (i=;i<lenb;i++)
{
u[i].c=b[i];
u[i].num=i;
}
sort(u,u+lenb,cmp);//对b串排序
for (i=;i<lenb;i++)//排序后存入字符串c中,便于使用lower_bound
{
c[i]=u[i].c;
}
c[lenb]=1e9+;
for (i=;i<lena;i++)//计算A中每个元素在B中的序号
{
k=lower_bound(c,c+lenb,a[i])-c;
while (k<lenb && a[i]==c[k])
{
p.push_back(u[k].num);
k++;
}
}
if(p.size()==) {
printf("1\n");
return ;
}
n=p.size();
dp[] = p[] ; dp[] = -inf ;
for( i = ans = ; i < n ; i++)
{
int l = , r = ans ;
while( l <= r )
{
int mid = ( l + r ) >> ;
if( dp[mid] >= p[i] ) r = mid - ;
else l = mid + ;
}
if( r == ans ) ans++,dp[r+] = p[i] ;
else if( dp[r+] > p[i] ) dp[r+] = p[i] ;
}
printf("%d\n",ans+);
return ;
}

最长公共子序列问题:

给定2个字符串,求其最长公共子串。如abcde和dbada的最长公共字串为bd。

动态规划:dp[i][j]表示A串前i个和B串前j个的最长公共子串的长度。

若A[i] == B[j] , dp[i][j] = dp[i-1][j-1] + 1;

否则 dp[i][j] = max(dp[i-1][j],dp[i][j-1]);

时间复杂度O(N*M)。

dp[i][j]仅在A[i]==B[j]处才增加,对于不相等的地方对最终值是没有影响的。

故枚举相等点处可以对其进行优化。

则对于dp[i][j](这里只计算A[i]==B[j]的i和j),取最大的dp[p][q],满足(p<i,q<j),通过二叉搜索树可以再logn的时间里获取到最大的dp[p][q],区间在[0,j)。

这里也可将其转化为最长递增子序列问题。

举例说明:

A:abdba

B:dbaaba

则1:先顺序扫描A串,取其在B串的所有位置:

2:a(2,3,5) b(1,4) d(0)。

3:用每个字母的反序列替换,则最终的最长严格递增子序列的长度即为解。

替换结果:532 41 0 41 532

最大长度为3.

简单说明:上面的序列和最长公共子串是等价的。

对于一个满足最长严格递增子序列的序列,该序列必对应一个匹配的子串。

反序是为了在递增子串中,每个字母对应的序列最多只有一个被选出。

反证法可知不存在更大的公共子串,因为如果存在,则求得的最长递增子序列不是最长的,矛盾。

最长递增子序列可在O(NLogN)的时间内算出。

dp[i] = max(dp[j]+1) ( 满足 a[i] > a[j] && i > j )

显然对于同样的如dp[k] = 3,假定k有多个,记为看k1,k2,.....,km 设k1 < k2 < .... < km

在计算dp[i]的时候,k2,k3,....,km显然对结果没有帮助,取当前最小的k,

满足ans[k] = p (最小的p使得dp[p]=k) ,每次二分,更新ans[dp[i]] = min(ans[dp[i]],i).

ps:LCS在最终的时间复杂度上不是严格的O(nlogn),不知均摊上是不是。

举个退化的例子:

如A:aaa

B:aaaa

则序列321032103210

长度变成了n*m ,最终时间复杂度O(n*m*(lognm)) > O(n*m)。

这种情况不知有没有很好的解决办法。

上一篇:hdoj 1753 大明A+B 高精度/java


下一篇:Python进阶之路---1.4python数据类型-数字