本节书摘来自华章社区《Python数据挖掘:概念、方法与实践》一书中的第1章,第1.4节如何建立数据挖掘工作环境,作者[美] 梅甘·斯夸尔(Megan Squire),更多章节内容可以访问云栖社区“华章社区”公众号查看
1.4 如何建立数据挖掘工作环境
前面几节帮助我们更好地了解了将要从事的项目及原因。现在可以开始建立一个开发环境,支持所有项目工作了。由于本书的目的是介绍如何构建挖掘数据模式的软件,因此我们将用一种通用编程语言编写程序。Python编程语言具有非常强大且仍在不断成长、专门致力于数据挖掘的社区。这个社区已经贡献了一些非常方便的程序库,我们可以用来进行高效的处理,我们还可以依靠他们提供的许多数据类型,更快地工作。
在本书编著时,有两个版本的Python可供下载:现在被视为经典的Python 2(最新版本为2.7)和Python 3(最新版本为3.5)。本书将使用Python 3。因为我们需要使用许多相关的程序包和程序库,尽可能地使数据挖掘体验不那么痛苦,也因为其中一些程序包和库难以安装,所以这里我建议使用专为科学及数学计算设计的Python分发版本。具体地说,我推荐Continuum Analytics 制作的Python 3.5 Anaconda分发版本。他们的基本Python分发版本是免费的,所有组件都保证能够协同工作,而无需我们进行令人沮丧的兼容性保证工作。
要下载Anaconda Python分发版本,只需要用浏览器访问Continuum Analytics的网站(https://www.continuum.io),根据提示符下载适合你的操作系统的Anaconda免费版本(目前的编号是3.5或者更高)。
启动该软件
根据你使用的版本和下载的时间,Anaconda中的每个应用程序中除了Launch按钮之外可能还有几个Update(更新)按钮。如果你的软件版本显示需要,可以单击每个按钮以更新程序包。
为了开始编写Python代码,单击Spyder以启动代码编辑器和集成开发环境。如果你想使用自己的文本编辑器(如MacOS上的TextWrangler或者Windows上的Sublime编辑器),完全没有问题。可以从命令行运行Python代码。
花一点时间将Spyder配置成你喜欢的样子,设置颜色和常规布局,或者保留默认值。对于我自己的工作空间,我移动了几个控制台窗口,建立一个工作目录,并进行几个自定义调整,使自己更适应这个新编辑器。你也可以这么做,使开发环境更舒适。
现在,我们已经为测试编辑器和安装程序库做好了准备。单击File(文件)并选择New File(新建文件)测试Spyder编辑器,观察其工作方式。然后,输入简单的“Hello World”语句:
单击绿色箭头,按下F5键或者单击Run(运行)菜单中的Run命令,运行程序。不管用哪一种方式,程序将执行,你将在控制台输出窗口看到输出。
此时,我们知道Spyder和Python正在工作,可以测试和安装一些程序库了。
首先,打开一个新文件,将其保存为packageTest.py。在这个测试程序中,我们将确定Scikit-learn是否已经随Anaconda正确安装。Scikit-learn是很重要的程序包,包含了许多机器学习函数,以及用于测试这些函数的现成数据集。许多书籍和教程使用Scikit-learn示例教授数据挖掘,所以在我们的工具箱中也有这个程序包。我们将在本书的多个章节中使用这个程序包。
运行Scikit-learn网站上的教程中的如下小程序(可以在http://scikit-learn.org/stable/tutorial/basic/tutorial.html #loading-an-example-dataset上找到),它将告诉我们环境是否正常建立。
最后,由于本书是关于数据挖掘或者数据结构中的知识发现的书籍,因此使用某种数据库软件绝对是个好主意。我选择MySQL实现本书中的项目,因为它是免费软件,易于安装,可用于许多种操作系统。
要得到MySQL,可以进入http://dev.mysql.com/downloads/mysql/,找到你要用操作系统的免费社区版本(Community Edition)下载页面。
为了让Anaconda Python与MySQL通信,必须安装一些MySQL Python驱动程序。我喜欢pymysql驱动程序,因为它相当健壮,没有标准驱动程序常会有的一些Bug。从Anaconda中,启动一个终端窗口,运行如下命令:
现在所有模块似乎都已经安装,可以在需要它们时使用。如果还需要其他模块,或者其中一个模块过时,现在我们也已经知道如何在必要时安装或者升级模块了。